Skip to main content
Log in

The stability of cladoceran communities in sub-arctic NW Finnish Lapland lakes

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

It is difficult to plan restoration projects or study the amount of disturbance in aquatic ecosystems if background conditions are not known. Zooplankton, especially cladocerans (water fleas), has proven highly useful as a reliable indicator of environmental change. Cladocerans preserve well in sediments and thus allow for the analysis of historical communities. To assess the stability of cladoceran communities in lakes with low human impact, we compared pre-industrial and modern cladoceran assemblages (top–bottom analysis) in 32 sub-Arctic lakes in NW Finnish Lapland. We used a dataset of measured environmental variables to determine their explanatory power on cladoceran assemblages. While cladoceran assemblages at the community level have remained relatively stable between the pre-industrial and modern samples, a clear change at the genus level was observed with a significant proportional increase in Bosmina (Eubosmina) spp. (Wilcoxon signed-rank test z = 2.75 p = 0.006). The amount of organic matter in the sediment [measured as loss on ignition (LOI)] explained the largest proportion of the variation in the cladoceran community. Since LOI is strongly correlated to climatic factors, the increased abundance of B. (Eubosmina) spp. may ultimately be related to climate warming. As the top–bottom approach is comprised of two temporal snapshots, it cannot provide the exact time of community change. This shortcoming is of special importance for restoration and management planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alric B, Jenny J-P, Berthon V, Arnaud F, Pignol C, Reyss J-L, Sabatier P, Perga M-E (2013) Local forcing affect lake zooplankton vulnerability and response to climate warming. Ecology 94:2767–2780

    Article  PubMed  Google Scholar 

  • Amsinc SL, Strzelczak A, Bjerring R, Landkildehus F, Lauridsen TL, Christoffersen K, Jeppesen E (2006) Lake depth rather than fish planktivory determines cladoceran community structure in Faroese lakes—evidence from contemporary data and sediments. Freshw Biol 51:2124–2142

    Article  Google Scholar 

  • Anttila P, Virkkula A, Ruosteenoja K, Hakola H, Vestenius M, Ryyppö T, Hellen H, Leppänen S (2011) Assessment of the impacts of climate change on pollution transport to the arctic region-action 13 final report. Finnish Meteorological Institute, Helsinki

  • Battarbee RW (2000) Palaeolimnological approaches to climate change, with special regard to the biological record. Quat Sci Rev 19:107–124

    Article  Google Scholar 

  • Battarbee RW, Cameron NG, Golding P, Brooks SJ, Switsur R, Harkness D, Appleby P, Oldfield F, Thompson R, Monteith DT, McGovern A (2001) Evidence for Holocene climate variability from the sediments of a Scottish remote mountain lake. J Quat Sci 16:339–346

    Article  Google Scholar 

  • Bennion H, Batterbee R (2007) The European Union water framework directive: opportunities for palaeolimnology. J Paleolimnol 38:285–295

    Article  Google Scholar 

  • Bennion H, Battarbee RW, Sayer CD, Simpson GL, Davidson TA (2011) Defining reference and restoration targets for lake ecosystems using paleolimnology: a synthesis. J Paleolimnol 45:533–544

    Article  Google Scholar 

  • Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. The Holocene 2:1–10

    Article  Google Scholar 

  • Bøhn T, Amundsen P-A (1998) Effects of invading vendace (Coregonus albula L.) on species composition and body size in two zooplankton communities of the Pasvik River System, northern Norway. J Plankton Res 20:243–256

    Article  Google Scholar 

  • Borsheim K, Andersen S (1987) Grazing and food size selection by crustacean zooplankton compared to production of bacteria and phytoplankton in a shallow Norwegian mountain lake. J Plankton Res 9:367–379

    Article  Google Scholar 

  • Brancelj A, Kernan M, Jeppesen E, Rautio M, Manca M, Sisko M, Alonso M, Stuchlik E (2009) Cladocera remains from the sediments of remote cold lakes: a study of 294 lakes across Europe. Adv Limnol 62:239–264

    Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Bredesen EL, Bos DG, Laird KR, Cumming BF (2002) A cladoceran-based paleolimnological assessment of the impact of forest harvesting on four lakes from the central interior of British Columbia, Canada. J Paleolimnol 28:389–402

    Article  Google Scholar 

  • Brooks JL, Dodson SI (1965) Predation, body size and composition of plankton. Science 150:28–35

    Article  CAS  PubMed  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • IBM Corp (2013) IBM SPSS Statistics for Windows, Version 22.0. IBM Corp, Amonk

    Google Scholar 

  • Desellas AM, Paterson AM, Sweetman JN, Smol JP (2011) Assessing the effects of multiple environmental stressors on zooplankton assemblages in boreal shield lakes since pre-industrial times. J Limnol 70:41–56

    Article  Google Scholar 

  • Donald DB, Vinebrooke RD, Anderson S, Syrgiannis J, Graham MD (2001) Recovery of zooplankton assemblages in mountain lakes from the effect of introduced sport fish. Can J Fish Aquat Sci 58:1822–1830

    Article  Google Scholar 

  • Eggermont H, Martens K (2011) Preface: cladocera crustaceans: sentinels of environmental change. Hydrobiologia 676:1–7

    Article  Google Scholar 

  • Eloranta AP, Kahilainen KK, Amundsen P-A, Kundsen R, Harrod C, Jones RI (2015) Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes. Ecol Evol 5:1664–1675

    Article  PubMed  PubMed Central  Google Scholar 

  • Frey DG (1962) Cladocera from the Eemian interglacial of Denmark. J Paleontol 36:1133–1154

    Google Scholar 

  • Frey DG (1987) The taxonomy and biogeography of the Cladocera. Hydrobiologia 145:5–17

    Article  Google Scholar 

  • Gulati RD, Pires LMD, Van Donk E (2008) Lake restoration studies: failures, bottlenecks and prospects of new ecotechnological failures. Limnologica 38:233–247

    Article  CAS  Google Scholar 

  • Hall DJ, Threlkeld ST, Burns CW, Crowley PH (1976) The size-efficiency hypothesis and the size structure of zooplankton communities. Ann Rev Ecol Syst 7:177–208

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST. Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  • Hettelingh J-P, Downing RJ, de Smet P (1992) The critical loads concept for the control of acidification. Stud Environ Sci 50:161–174

    Article  CAS  Google Scholar 

  • Hrbacek J, Dvorakova M, Korinek V, Prochazkova L (1961) Demonstration of the effect of fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Int Ver Theor Angew Limnol Verh 14:192–195

    Google Scholar 

  • Janse JH, De Senerpont Domis LN, Scheffer M, Lijklema L, Van Liere L, Klinge M, Mooij WM (2008) Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PCLake. Limnologica 38:203–219

    Article  CAS  Google Scholar 

  • Jeppesen E, Nõges P, Davidson T, Haberman J, Nõges T, Blank K, Lauridsen T, Søndergaard M, Sayer C, Laugaste R, Johansson L, Bjerring R, Amsinck S (2011) Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676:279–297

    Article  CAS  Google Scholar 

  • Jeziorski A, Yan ND, Paterson AM, DeSellas AM, Turner MA, Jeffries DS, Keller B, Weeber RC, McNicol DK, Palmer ME, McIver K, Arseneau K, Ginn BK, Cumming BF, Smol JP (2008) The widespread threat of calcium decline in fresh waters. Science 322:1374–1377

    Article  CAS  PubMed  Google Scholar 

  • Jeziorski A, Keller B, Dyer R, Paterson A, Smol J (2015) Differences among modern-day and historical cladoceran communities from the “Ring of Fire” lake region in northern Ontario: identifying responses to climate warming. Fund Appl Limnol 186:203–216

    Article  Google Scholar 

  • Johnsen G, Borsheim K (1988) Functional response and food selection of the water flea, Bosmina longispina. J Plankton Res 10:319–325

    Article  Google Scholar 

  • Johnsen GH, Raddum GG (1987) A morphological study of two populations of Bosmina longispina exposed to different predation. J Plankton Res 9:297–304

    Article  Google Scholar 

  • Kaplan MR, Wolfe AP, Miller AP (2002) Holocene environmental variability in southern Greenland inferred from lake sediments. Quat Res 58:149–159

    Article  Google Scholar 

  • Korhola A (1999) Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22:357–373

    Article  Google Scholar 

  • Korhola A, Weckström J (2004) Paleolimnological studies in Arctic Fennoscandia and the Kola Peninsula (Russia). In: Pienitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in Arctic and Antarctic lakes, vol 8. Kluwer Academic Publishers, Dordrecht, pp 381–418

    Chapter  Google Scholar 

  • Korhola A, Olander H, Blom T (2000) Cladoceran and chironomid assemblages as qualitative indicators of water depth in subarctic Fennoscandian lakes. J Paleolimnol 24:43–54

    Article  Google Scholar 

  • Korhola A, Sorvari S, Rautio M, Appleby PG, Dearing JA, Hu Y, Rose N, Lami A, Cameron NG (2002) A multi-proxy analysis of climate impacts on the recent development of subarctic Lake Saanajarvi in Finnish Lapland. J Paleolimnol 28:59–77

    Article  Google Scholar 

  • Korosi JB, Smol JP (2011) Distribution of cladoceran assemblages across environmental gradients in Nova Scotia (Canada) lakes. Hydrobiologia 663:83–99

    Article  CAS  Google Scholar 

  • Korosi JB, Smol JP (2012) A comparison of present-day and pre-industrial cladoceran assemblages from softwater Nova Scotia (Canada) lakes with different regional acidification histories. J Paleolimnol 47:43–54

    Article  Google Scholar 

  • Korovchinsky NM (2016) Redescription of Bythotrephes arcticus Lilljeborg, 1901 (Crustacea:Cladocera: Onychopoda) and confirmation of an independent species status of the distant Transcaucasian populations of the genus Bythotrephes Leydig. Zootaxa 4138:247–270

    Article  PubMed  Google Scholar 

  • Korponai J, Varga KA, Lengre T, Papp I, Toth A, Braun M (2011) Paleolimnological reconstruction of the trophic state in Lake Balaton (Hungary) using Cladocera remains. Hydrobiologia 676:237–248

    Article  CAS  Google Scholar 

  • Kurek J, Korosi JB, Jeziorski A, Smol JP (2010) Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. J Paleolimnol 44:603–612

    Article  Google Scholar 

  • Kuzmina Y, Leshko Y (2002) Hydrobiological effects of gathering reindeer at an arctic lake in Russia. Rangifer 13:39–40

    Article  Google Scholar 

  • Lotter A, Birks H, Hofmann W, Marchetto A (1997) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. 1. Clim J Paleolimnol 18:395–420

    Article  Google Scholar 

  • Louette G, Declerc S, Vandekerkhove J, De Meester J (2009) Evaluation of restoration measures in a shallow lake through a comparison of present day zooplankton communities with historical samples. Restor Ecol 17:629–640

    Article  Google Scholar 

  • Luoto T, Nevalainen PL, Sarmaja-Korjonen K (2013) Zooplankton (Cladocera) in assessments of biologic integrity and reference conditions: appliance of sedimentary assemblages from shallow boreal lakes. Hydrobiologia 707:173–185

    Article  CAS  Google Scholar 

  • Manca M, Torretta B, Comoli P, Amsinck SL, Jeppesen E (2007) Major changes in trophic dynamics in large, deep sub-alpine Lake Maggiore from 1940s to 2002: a high resolution comparative palaeo-neolimnological study. Freshwater Biol 52:2256–2269

    Article  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Michelutti N, Laing TE, Smol JP (2001) Diatom assessment of past environmental changes in lakes located near the Noril’sk (Siberia) smelters. Water Air Soil Poll 125:231–241

    Article  CAS  Google Scholar 

  • Michelutti N, Wolfe AP, Vinebrooke RD, Rivard B, Briner JP (2005) Recent primary production increases in arctic lakes. Geophys Res Lett 32:L19715

    Article  Google Scholar 

  • Milardi M, Siitonen S, Lappalainen J, Liljendahl A, Weckström J (2016) The impact of trout introductions on macro- and microinvertebrate communities in fishless boreal lakes. J Paleolimnol 55:273–287

    Article  Google Scholar 

  • Nesje A, Dahl SO (2001) The Greenland 8200 calendar years BP event detected in loss-on-ignition profiles of Norwegian lacustrine sediment sequences. J Quat Sci 16:155–166

    Article  Google Scholar 

  • Nevalainen L, Luoto TP (2012) Faunal (Chironomidae: Cladocera) responses to post-Little Ice Age climate warming in the high Austrian Alps. J Paleolimnol 48:711–724

    Article  Google Scholar 

  • O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters JD, McIntyre PB, Kraemer BM et al (2015) Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett 42:10773–10781

    Article  Google Scholar 

  • Paatero J, Dauvalter V, Derome J, Lehto J, Pasanen J, Vesala T, Miettinen J, Makkonen U, Kyrö E, Jernström J, Isaeva L, Derome K (2008) Effects of Kola air pollution on the environment in the western part of the Kola Peninsula and Finnish Lapland. Finnish Meteorological Institute Reports 2008/6 Helsinki

  • Pace ML, Carpenter SR, Johnson RA, Kurtzweil JT (2013) Zooplankton provide early warning of a regime shift in a whole lake manipulation. Limnol Oceanogr 58:525–532

    Article  Google Scholar 

  • Persson L (1986) Effects if reduced interspecific competition on resource utilization in Perch (Perca fluviatilis). Ecology 67:355–364

    Article  Google Scholar 

  • Rautio M (2001) Zooplankton assemblages related to environmental characteristics in treeline ponds in Finnish Lapland. Arct Antarct Alp Res 33:289–298

    Article  Google Scholar 

  • Rautio M, Mariash H, Forsström L (2011) Seasonal shifts between autochthonous and allochthonous carbon contributions to zooplankton diets in a subarctic lake. Limnol Oceanogr 56:1513–1524

    Article  CAS  Google Scholar 

  • Rawcliffe R, Sayer CD, Woodward G, Grey J, Davidson TA, Jones JI (2010) Back to the future: using palaeolimnology to infer long-term changes in shallow lake food webs. Freshw Biol 55:600–613

    Article  Google Scholar 

  • Rühland K, Priesnitz A, Smol J (2003) Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian arctic treeline. Arct Antarct Alp Res 35:110–123

    Article  Google Scholar 

  • Rühling Å, Steinnes E (2002) Heavy metals in surface soil in Fennoscandia. NORD 2002/4 Nordic Council of Ministers, Copenhagen

  • Säisä M, Rönn J, Aho T, Björklund M, Pasanen P, Koljonen M-L (2008) Genetic differentiation among European whitefish ecotypes based on microsatellite data. Hereditas 145:69–83

    Article  PubMed  Google Scholar 

  • Sarmaja-Korjonen K, Alhonen P (1999) Cladoceran and diatom evidence of lake-level fluctuations from a Finnish lake and the effect of aquatic-moss layers on microfossil assemblages. J Paleolimnol 22:277–290

    Article  Google Scholar 

  • Sarmaja-Korjonen K, Nyman M, Kultti S, Väliranta M (2006) Palaeolimnological development of Lake Njargajavri, northern Finnish Lapland, in a changing Holocene climate and environment. J Paleolimnol 35:65–81

    Article  Google Scholar 

  • Seppovaara O (1969) Nieriä (Salvelinus alpinus L.) ja sen kalataloudellinen merkitys suomessa. Suomen Kalatalous 37. Maataloushallitus, Helsinki

  • Shutner BJ, Schlesinger DA, Zimmerman AP (1983) Empirical predictors of annual surface water temperature cycles in North American lakes. Can J Fish Aquat Sci 40:1838–1845

    Article  Google Scholar 

  • Siitonen S (2005) Vesikirput kahden Kilpisjärven alueen järven viimeaikaisen kehityksen kuvaajina. MSc thesis. University of Helsinki, Helsinki

  • Siitonen S, Väliranta M, Weckström J, Juutinen S, Korhola A (2011) Comparison of Cladocera-based water-depth reconstruction against other types of proxy data in Finnish Lapland. Hydrobiologia 676:155–172

    Article  CAS  Google Scholar 

  • Simon M, Wünch C (1998) Temperature control of bacterioplankton growth in a temperate lake. Aquat Microb Ecol 16:119–130

    Article  Google Scholar 

  • Sinev AY (2009) Discrimination between two sibling species of Acroperus (Baird, 1843) from the Palearctic (Cladocera: Anomopoda: Chydoridae). Zootaxa 2176:1–21

    Google Scholar 

  • Sinev AY, Dumont HJ (2016) Revision of the costata-group of Alona s. lato (Cladocera: Anomopoda: Chydoridae) confirms its generic status. Europ J Taxon 223:1–38

    Google Scholar 

  • Smol JP (1992) Paleolimnology: an important tool for effective ecosystem management. J Aquat Ecosyst Health 1:49–58

    Article  Google Scholar 

  • Smol J, Wolfe A, Birks H, Douglas M, Jones V, Korhola A, Pienitz R, Ruhland K, Sorvari S, Antoniades D, Brooks S, Fallu M, Hughes M, Keatley B, Laing T, Michelutti N, Nazarova L, Nyman M, Paterson A, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorvari S, Korhola A (1998) Recent diatom assemblage changes in subarctic Lake Saanajärvi NW Finnish Lapland, and their paleoenvironmental implications. J Paleolimnol 20:205–215

    Article  Google Scholar 

  • Sorvari S, Korhola A, Thompson R (2002) Lake diatom response to recent Arctic warming in Finnish Lapland. Global Change Biol 8:171–181

    Article  Google Scholar 

  • Sprules WG, Carter JCH, Ramcharan CW (1984) Phenotypic associations in the Bosminidae (Cladocera): zoogeographic patterns. Limnol Oceanogr 29:161–169

    Article  Google Scholar 

  • Stenson JAE (1976) Significance of predator influences on composition of Bosmina spp. populations. Limnol Oceanogr 21:814–822

    Article  Google Scholar 

  • Sweetman JN, LaFace E, Ruhland KM, Smol JP (2008) Evaluating the response of Cladocera to recent environmental changes in lakes from the central Canadian Arctic treeline region. Arct Antarct Alp Res 40:584–591

    Article  Google Scholar 

  • Sweetman JN, Ruhland KM, Smol JP (2010) Environmental and spatial factors influencing the distribution of cladocerans in lakes across the central Canadian Arctic treeline region. J Limnol 69:76–87

    Article  Google Scholar 

  • Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of subfossil cladocera from central and northern Europe. Friends of the Lower Vistula Society, Warzaw

    Google Scholar 

  • Tammi J, Appelberg M, Beier U, Hesthagen T, Lappalainen A, Rask M (2003) Fish status survey of Nordic Lakes: effects of acidification, eutrophication and stocking activity on present fish species composition. Ambio 32:98–105

    Article  PubMed  Google Scholar 

  • ter Braak CJF, Šmilauer P (2007–2012) Canoco reference manual and user’s guide: Software for 623 ordination version 50 Microcomputer power, Itaca

  • Tolonen A (1997) Size-specific food selection and growth in benthic whitefish (Coregonus lavaretus (L.), in a subarctic lake. Boreal Environ Res 2:387–399

    Google Scholar 

  • European Union (2000) Directive 2000/60/EC of the European Parliament and the council of 23 October 2000 on establishing a framework for community action in the field of water policy. Eur J Commun L327:1–72

    Google Scholar 

  • Van Damme K, Dumont HJ (2008) Further division of Alona Baird, 1843: separation and position of Coronatella Dybowski & Grochowski and Ovalona gen. n. (Crustacea: Cladocera). Zootaxa 1960:1–44

    Google Scholar 

  • van Oldenborgh GJ (1999) Koninklijk Nederlands Meteorologisch Instituut (KNMI). KNMI Climate Explorer. http://climexp.knmi.nl/. Accessed on 1 Dec, 2015

  • Weckström J, Korhola A (2001) Patterns in the distribution, composition and diversity of diatom assemblages in relation to ecoclimatic factors in Arctic Lapland. J Biogeogr 28:31–45

    Article  Google Scholar 

  • Weckström J, Korhola A, Blom T (1997) The relationship between diatoms and water temperature in thirty subarctic Fennoscandian lakes. Arct Antarct Alp Res 29:75–92

    Article  Google Scholar 

  • Weckström J, Snyder JA, Korhola A, Laing TE, MacDonald GM (2003) Diatom inferred acidity history of 32 lakes on the Kola Peninsula, Russia. Water Air Soil Poll 149:339–361

    Article  Google Scholar 

  • Weckström J, Hanhijärvi ST, Forsström L, Kuusisto E, Korhola A (2014) Reconstructing lake ice cover in subarctic lakes using a diatom- based inference model. Geophys Res Lett 41:2026–2032

    Article  Google Scholar 

  • Wetzel RG (1992) Clean water: a fading resource. Hydrobiologia 243(244):21–30

    Article  Google Scholar 

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80–83

    Article  Google Scholar 

  • Willemse NW, Törnquist TE (1999) Holocene century-scale temperature variability from west Greenland lake records. Geology 27:580–584

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Tellervo and Jussi Walden foundation. We thank Sanna Korkonen and Juha Niemistö for help in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaakko Leppänen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leppänen, J., Siitonen, S. & Weckström, J. The stability of cladoceran communities in sub-arctic NW Finnish Lapland lakes. Polar Biol 40, 2211–2223 (2017). https://doi.org/10.1007/s00300-017-2135-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2135-y

Keywords

Navigation