Skip to main content

Advertisement

Log in

Uncovering aquatic diversity patterns in two Patagonian glacial lakes: does habitat heterogeneity matter?

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

A Correction to this article was published on 21 March 2023

This article has been updated

Abstract

Glacially-influenced lakes are responding to global warming, improving our understanding of these threatened ecosystems is globally imperative especially at southern hemisphere areas like Patagonia. We compared environmental parameters, phytoplankton and littoral benthic macroinvertebrates at two lakes fed by retreating glaciers: El Antiguo (proglacial) and Bagillt (glacial). Our prediction was that differences in water temperature, nutrients, food resources and spatial heterogeneity will modulate aquatic diversity facets. Harsher environmental conditions were recorded at the proglacial lake, including colder water, lower availability of allochthonous resources, and lower pH; but no differences existed in total suspended solids, chlorophyll a, and nutrients. The phytoplankton community (23 taxa) was dominated by Coscinodiscophyceae and Fragilariophyceae at El Antiguo, whereas at Bagillt (20 taxa) Bacillariophyceae and Zygnemathophyceae were the richest groups. The glacial lake included aquatic insects, amphipods, leeches, and mollusks, exhibiting a significantly higher invertebrate richness than the proglacial lake (33 and 8 taxa, respectively). The latter was dominated by Podonominae and Diamesinae (Chironomidae, Diptera). The turnover component of within lakes beta diversity was consistently higher at Bagillt than at El Antiguo. Long-term approaches could clarify whether the expected compositional changes recorded in the northern hemisphere’s aquatic communities correspond to southern hemisphere patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

Change history

References

  • Andino P, Espinosa R, Crespo-Pérez V et al (2021) Functional feeding groups of macrofauna and detritus decomposition along a gradient of glacial meltwater influence in tropical high-andean streams. Water 13:1–16. https://doi.org/10.3390/w13223303

    Article  CAS  Google Scholar 

  • APHA (1999) Standard methods for the examination of water and wastewater. American Public Health Association, Hanover

    Google Scholar 

  • Arcagni M, Campbell LM, Arribére MA et al (2013) Food web structure in a double-basin ultra-oligotrophic lake in Northwest Patagonia, Argentina, using carbon and nitrogen stable isotopes. Limnologica 43:131–142. https://doi.org/10.1016/j.limno.2012.08.009

    Article  CAS  Google Scholar 

  • Bartels A, Berninger UG, Hohenberger F et al (2021) Littoral macroinvertebrate communities of alpine lakes along an elevational gradient (Hohe Tauern National Park, Austria). PLoS One 16:1–20. https://doi.org/10.1371/journal.pone.0255619

    Article  CAS  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19(1):134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  • Baselga A (2013) Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol Evol 4:552–557. https://doi.org/10.1111/2041-210X.12029

    Article  Google Scholar 

  • Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F, Logez M, Henriques-Silva R (2020) betapart: Partitioning beta diversity into turnover and nestedness components 1.5.2 p. 44

  • Bastidas Navarro M, Martyniuk N, Balseiro E, Modenutti B (2017) Effect of glacial lake outburst floods on the light climate in an Andean Patagonian lake: implications for planktonic phototrophs. Hydrobiologia. https://doi.org/10.1007/s10750-016-3080-4

    Article  Google Scholar 

  • Bitušík P, Šporka F, Krno I (2010) Benthic macroinvertebrate fauna of two alpine lakes over the last century: the value of historical data for interpreting environmental changes. Biologia 65:884–891. https://doi.org/10.2478/s11756-010-0102-y

    Article  Google Scholar 

  • Boggero A, Zaupa S, Musazzi S et al (2019) Environmental factors as drivers for macroinvertebrate and diatom diversity in alpine lakes: new insights from the stelvio national park (Italy). J Limnol 78:147–162. https://doi.org/10.4081/jlimnol.2019.1863

    Article  Google Scholar 

  • Brighenti S, Tolotti M, Bruno MC et al (2019) Ecosystem shifts in Alpine streams under glacier retreat and rock glacier thaw: a review. Sci Total Environ 675:542–559. https://doi.org/10.1016/j.scitotenv.2019.04.221

    Article  CAS  PubMed  Google Scholar 

  • Čiamporová-Zaťovičová Z, Hamerlík L, Šporka F, Bitušík P (2010) Littoral benthic macroinvertebrates of alpine lakes (Tatra Mts) along an altitudinal gradient: a basis for climate change assessment. Hydrobiologia 648:19–34. https://doi.org/10.1007/s10750-010-0139-5

    Article  Google Scholar 

  • Debiasi D, Franceschini A, Paoli F, Lencioni V (2022) How do macroinvertebrate communities respond to declining glacial influence in the Southern Alps? Limnetica 41:121–137. https://doi.org/10.23818/limn.41.10

    Article  Google Scholar 

  • del Valle HF, Elissalde NO, Gagliardini DA, Milovich J (1998) Status of desertification in the Patagonian region: assessment and mapping from satellite imagery. Arid Land Res Manag 12:95–121. https://doi.org/10.1080/15324989809381502

    Article  Google Scholar 

  • Diaz M, Pedrozo F, Baccala N (2000) Summer classification of Southern Hemisphere temperate lakes (Patagonia, Argentina). Lakes Reserv Res Manag 5:213–229. https://doi.org/10.1046/j.1440-1770.2000.00118.x

    Article  Google Scholar 

  • Domínguez E, Fernández HR (2009) Macroinvertebrados bentónicos sudamericanos sistemática y biología. Fundación Miguel Lillo, Tucumán, p 656

    Google Scholar 

  • Dussaillant I, Berthier E, Brun F, Masiokas M, Hugonnet R, Favier V, Rabatel A, Pitte P, Ruiz L (2019) Two decades of glacier mass loss along the Andes. Nat Geosci. https://doi.org/10.1038/s41561-019-0432-5

    Article  Google Scholar 

  • Ferrario ME, Sar EA, Sala SE (1995) Metodología básica para el estudio del fitoplancton con especial referencia a las diatomeas. In: Alveal K, Ferrario ME, Oliveira EC, Sar E (eds) Manual de Métodos Ficológicos. Universidad de Concepción, Chile, pp 1–23

    Google Scholar 

  • Finn DS, Khamis K, Milner AM (2013) Loss of small glaciers will diminish beta diversity in Pyrenean streams at two levels of biological organization. Glob Ecol Biogeogr 22:40–51. https://doi.org/10.1111/j.1466-8238.2012.00766.x

    Article  Google Scholar 

  • Fjellheim A, Raddum GG, Vandvik V et al (2009) Diversity and distribution patterns of benthic invertebrates along alpine gradients. A study of remote European freshwater lakes. Adv Limnol 62:167–190. https://doi.org/10.1127/advlim/62/2009/167

    Article  CAS  Google Scholar 

  • Füreder L, Ettinger R, Boggero A et al (2006) Macroinvertebrate diversity in Alpine lakes: effects of altitude and catchment properties. Hydrobiologia 562:123–144. https://doi.org/10.1007/s10750-005-1808-7

    Article  CAS  Google Scholar 

  • Gaskill JA, Harris TD, North RL (2020) Phytoplankton community response to changes in light: can glacial rock flour be used to control cyanobacterial blooms? Front Environ Sci 8:1–21. https://doi.org/10.3389/fenvs.2020.540607

    Article  Google Scholar 

  • Gobbi M, Lencioni V (2021) Glacial biodiversity: lessons from ground-dwelling and aquatic insects. Glaciers Polar Environ. https://doi.org/10.5772/intechopen.92826

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Guiry MD (2021) In: Guiry MD, Guiry GM (eds) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org

  • Hamada N, Thorp JH, Rogers DC (2018) Keys to neotropical hexapoda. Thorp 617 and Covich’s Freshwater Invertebrates. Elsevier, London

    Google Scholar 

  • Hamerlík L, Svitok H, Novikmec M et al (2014) Local, among-site, and regional diversity patterns of benthic macroinvertebrates in high altitude waterbodies: do ponds differ from lakes? Hydrobiologia 723:41–52

    Article  Google Scholar 

  • Hasle GR, Fryxell GA (1970) Diatoms: cleaning and mounting for light and electron microscopy. Trans Am Microsc Soc 89(4):469–470

    Article  Google Scholar 

  • Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev 84:39–54. https://doi.org/10.1111/j.1469-185X.2008.00060.x

    Article  PubMed  Google Scholar 

  • Hotaling S, Hood E, Hamilton TL (2017a) Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ Microbiol 19:2935–2948. https://doi.org/10.1111/1462-2920.13766

    Article  PubMed  Google Scholar 

  • Hotaling S, Tronstad LM, Bish JC (2017b) Macroinvertebrate richness is lower in high-elevation lakes vs nearby streams: evidence from Grand Teton National Park, Wyoming. J Nat Hist 51:1657–1669. https://doi.org/10.1080/00222933.2017.1353149

    Article  Google Scholar 

  • IPCC (2013) GLACIARES ANDINOS: La necesidad de una agenda transversal: 28. Climate action Network Latin America. pp 18

  • Jacobsen D, Milner AM, Brown LE, Dangles O (2012) Biodiversity under threat in glacier-fed river systems. Nat Clim Chang 2:361–364. https://doi.org/10.1038/nclimate1435

    Article  Google Scholar 

  • Jennings DRH (2021) Does glacial retreat impact benthic chironomid communities? A case study from rocky mountain national park Colorado. SN Appl Sci 3:855. https://doi.org/10.1007/s42452-021-04835-7

    Article  CAS  Google Scholar 

  • Jönsson M, Ranaker L, Nicolle A et al (2011) Glacial clay affects foraging performance in a Patagonian fish and cladoceran. Hydrobiologia 663:101–108. https://doi.org/10.1007/s10750-010-0557-4

    Article  Google Scholar 

  • Kociolek JP, Theriot EC, Williams DM et al (2015a) Centric and araphid diatoms. In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater algae of North America. Academic Press, San Diego, pp 653–708

    Chapter  Google Scholar 

  • Kociolek JP, Spaulding SA, Lowe RL (2015b) Bacillariophyceae: the raphid diatoms. In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater algae of North America. Academic Press, San Diego, pp 709–772

    Chapter  Google Scholar 

  • Kvambekk ÅS, Melvold K (2010) Long-term trends in water temperature and ice cover in the subalpine lake, Øvre Heimdalsvatn, and nearby lakes and rivers. Hydrobiologia 642:47–60. https://doi.org/10.1007/s10750-010-0158-2

    Article  Google Scholar 

  • Laspoumaderes C, Modenutti B, Souza MS et al (2013) Glacier melting and stoichiometric implications for lake community structure: zooplankton species distributions across a natural light gradient. Glob Chang Biol 19:316–326. https://doi.org/10.1111/gcb.12040

    Article  PubMed  Google Scholar 

  • Lee, RE (2008) Phycology. Cambridge University Press. 4th Edition. pp 561

  • Lencioni V, Spitale D (2015) Diversity and distribution of benthic and hyporheic fauna in different stream types on an alpine glacial floodplain. Hydrobiologia 751:73–87. https://doi.org/10.1007/s10750-014-2172-2

    Article  Google Scholar 

  • Martel-Cea A, Astorga GA, Hernández M et al (2021) Modern chironomids (Diptera: Chironomidae) and the environmental variables that influence their distribution in the Araucanian lakes, south-central Chile. Hydrobiologia 848:2551–2568

    Article  Google Scholar 

  • Marzeion B, Jarosch AH, Gregory JM (2014) Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change. Cryosphere 8:59–71

    Article  Google Scholar 

  • Masiokas MH, Villalba R, Luckman BH et al (2008) 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Glob Planet Change 60:85–100. https://doi.org/10.1016/j.gloplacha.2006.07.031

    Article  Google Scholar 

  • Milner AM, Khamis K, Battin TJ et al (2017) Glacier shrinkage driving global changes in downstream systems. Proc Natl Acad Sci USA 114:9770–9778. https://doi.org/10.1073/pnas.1619807114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miserendino ML, Brand C, Epele L et al (2018) Biotic diversity of benthic macroinvertebrates at contrasting glacier-fed systems in Patagonia mountains : the role of environmental heterogeneity facing global warming. Sci Total Environ 622–623:152–163. https://doi.org/10.1016/j.scitotenv.2017.11.320

    Article  CAS  PubMed  Google Scholar 

  • Modenutti B, Bastidas Navarro M, Martyniuk N, Balseiro E (2018) Melting of clean and debris-rich ice differentially affect nutrients, dissolved organic matter and bacteria respiration in the early ontogeny of the newly formed proglacial Ventisquero Negro Lake (Patagonia Argentina). Freshw Biol 63:1341–1351. https://doi.org/10.1111/fwb.13161

    Article  CAS  Google Scholar 

  • Morrone JJ (2005) Biogeographic areas and transition zones of Latin America and the Caribbean islands based on Panbiogeographic and cladistic analyses of the entomofauna. Annu Rev Entomol 51:467–494. https://doi.org/10.1146/annurev.ento.50.071803.130447

    Article  CAS  Google Scholar 

  • Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J (2022) _vegan: Community Ecology Package_. R package version 2.6–2, <https://CRAN.R-project.org/package=vegan>

  • Oleksy IA, Baron JS, Beck WS (2021) Nutrients and warming alter mountain lake benthic algal structure and function. Freshw Sci 40:88–102. https://doi.org/10.1086/713068

    Article  Google Scholar 

  • Paruelo JM, Jobbagy EG, Sala OE (1998) Biozones of Patagonia (Argentina). Ecol Austral 8:145–153

    Google Scholar 

  • Perkins DM, Reiss J, Yvon-Durocher G, Woodward G (2010) Global change and food webs in running waters. Hydrobiologia 657:181–198. https://doi.org/10.1007/s10750-009-0080-7

    Article  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (Available from http://www.R-project.org/)

  • Rabassa J (2010) El cambio climático global en la Patagonia desde el viaje de Charles Darwin hasta nuestros días. Rev La Asoc Geológica Argentina 67:139–156

    Google Scholar 

  • Reato A, Martínez O, Cottescu A (2022a) Evento hídrico vinculado a paraglaciarismo activo en la cuenca del Glaciar Torrecillas, Parque Nacional Los Alerces Chubut. Actas del XXI Congreso Geológico Argentino, Puerto Madryn, pp 1043–1044

    Google Scholar 

  • Reato A, Percudani L, Rotela C, et al (2022b). Evidencias de retroceso glaciario reciente en la cuenca del Arroyo Torrecillas, Parque Nacional Los Alerces. Nuevas amenazas asociadas al cambio climático. VIII Congreso de Cuaternario y Geomorfología. Asociación Argentina de Cuaternario y de Germofologia. San Juan, Argentina

  • Rosset V, Oertli B (2011) Freshwater biodiversity under climate warming pressure: identifying the winners and losers in temperate standing waterbodies. Biol Cons 144(9):2311–2319. https://doi.org/10.1016/j.biocon.2011.06.009

    Article  Google Scholar 

  • Ruiz L, Pitte P, Rivera A et al (2022) Current state and recent changes of glaciers in the patagonian andes (~37 °S to 55 °S). In: Quintana G, Mataloni R (eds) Freshwaters and wetlands of patagonia ecosystems and socioecological aspects. Springer, Cham, pp 59–91

    Chapter  Google Scholar 

  • Sandin L, Schmidt-Kloiber A, Svenning JC et al (2014) A trait-based approach to assess climate change sensitivity of freshwater invertebrates across Swedish ecoregions. Curr Zool 60:221–232

    Article  Google Scholar 

  • Santinelli N, Otaño S, Pizzolon LA (1998) Phytoplankton periodicity and spatial distribution in Futalaufquen Lake, Patagonia. Argentina Verh Internat Verein Limnol 26:1772–1776

    Google Scholar 

  • Shepard ID, Wissinger SA, Greig HS (2021) Elevation alters outcome of competition between resident and range-shifting species. Glob Change Biol 27:270–281. https://doi.org/10.1111/gcb.15401

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman and Company, New York, p 859

    Google Scholar 

  • Sommaruga R (2014) When glaciers and ice sheets melt: consequences for planktonic organisms. J Plankton Res 37:509–518. https://doi.org/10.1093/plankt/fbv027

    Article  Google Scholar 

  • Sommaruga R (2015) When glaciers and ice sheets melt: consequences for planktonic organisms. J Plankton Res 37:509–518

    Article  PubMed  Google Scholar 

  • ter Braak CJF, Smilauer P (1998) CANOCO Reference manual and User’s guide to Canoco for Windows: software for canonical community ordination (version 4). Microcomputer power, Ithaca, p 352

    Google Scholar 

  • ter Braak CJF, Smilauer P (1999) CANOCO for Windows (version 4.02) a FORTRAN program for canonical community ordination. Centre for biometry, Wageningen

    Google Scholar 

  • Tiberti R, Buscaglia F, Callieri C et al (2020) Food web complexity of high mountain lakes is largely affected by glacial retreat. Ecosystems 23:1093–1106. https://doi.org/10.1007/s10021-019-00457-8

    Article  Google Scholar 

  • Tweed FS, Carrivick JL (2015) Deglaciation and proglacial lakes. Geol Today 31:96–102

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lakes and rivers ecosystems, 3rd edn. Academic Press, Elsevier, p 1005

    Google Scholar 

  • Zaharescu DG, Burghelea CI, Hooda PS et al (2016) Small lakes in big landscape: multi-scale drivers of littoral ecosystem in alpine lakes. Sci Total Environ 551–552:496–505. https://doi.org/10.1016/j.scitotenv.2016.02.066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank to Dr. Luz Manzo, Dr. Ricardo Casaux, Lic. Lucía Molina, Dr. Gabriel Martin, Pablo de la Fuente, Pablo Gervasini, Ezequiel Suárez, Brenda Sede Lucena, Fidel Moreno, Walter Cerdá, Ignacio Contreras, Dirección Nacional de Parques (DNP), for field trip assistance. Dr. Yanina Assef assisted with laboratory analyses. For permission to conduct field work in parks and reserves to: Subsecretaría de Conservación de Áreas Protegidas, Dirección Pcial. de Flora y Fauna Silvestre, and DNP. This is scientific contribution n° 170 from LIESA-CIEMEP-CONICET-UNPSJB.

Funding

This paper was partially supported by the CONICET (PIP 11220120100119).

Author information

Authors and Affiliations

Authors

Contributions

MLM designed the study, analyzed the data and led the writing. MLM and CB conducted invertebrate analyses. LBE collected field data, run analyses and revised the manuscript critically in contents and structure, NS, VS and NU analyzed phytoplankton. All authors provided critical feedback on the whole manuscript.

Corresponding author

Correspondence to María Laura Miserendino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to missing figure 6.

Electronic supplementary material

Below is the link to the electronic supplementary material.

27_2023_949_MOESM1_ESM.png

Supplementary file1 Figure S1: Taxa richness and rarefied richness of macroinvertebrates at El Antiguo and Bagillt lakes (Patagonia, Argentina) (PNG 84 KB)

Appendix

Appendix

Table 4 Phytoplankton composition at El Antiguo Lake (Torrecillas Glacier) and Bagillt Lake (Cónico Glacier) during Summer/Autumn of 2015 (Patagonia, Argentina)
Table 5 Mean density (ind rep–1) of macroinvertebrate taxa at sampling sites on El Antiguo Lake (Torrecillas Glacier) and Bagillt Lake (Cónico Glacier) during the summer/autumn of 2015 (Patagonia, Argentina)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miserendino, M.L., Epele, L.B., Brand, C. et al. Uncovering aquatic diversity patterns in two Patagonian glacial lakes: does habitat heterogeneity matter?. Aquat Sci 85, 52 (2023). https://doi.org/10.1007/s00027-023-00949-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-023-00949-9

Keywords

Navigation