Skip to main content
Log in

Targeting the Autophagy Specific Lipid Kinase VPS34 for Cancer Treatment: An Integrative Repurposing Strategy

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The impact of autophagy on cancer treatment and its corresponding responsiveness has galvanized the scientific community to develop novel inhibitors for cancer treatment. Importantly, the discovery of inhibitors that targets the early phase of autophagy was identified as a beneficial choice. Despite the number of research in recent years, screening of the DrugBank repository (9591 molecules) for the Vacuolar protein sorting 34 (VPS34) has not been reported earlier. Therefore, the present study was designed to identify potential VPS34 antagonists using integrated pharmacophore strategies. Primarily, an energy-based pharmacophore and receptor cavity-based analysis yielded five (DHRRR) and seven featured (AADDHRR) pharmacophore hypotheses respectively, which were utilized for the database screening process. The glide score, the binding free energy, pharmacokinetics and pharmacodynamics properties were examined to narrow down the screened compounds. This analysis yielded a hit molecule, DB03916 that exhibited a better docking score, higher binding affinity and better drug-like properties in contrast to the reference compound that suffers from a toxicity property. Importantly, the result was validated using a 50 ns molecular dynamics simulation study. Overall, we conclude that the identified hit molecule DB03916 is believed to serve as a prospective antagonist against VPS34 for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar A, Singh UK, Chaudhary A (2015) Targeting autophagy to overcome drug resistance in cancer therapy. Future Med Chem 7:1535–1542

    Article  CAS  PubMed  Google Scholar 

  2. Rebecca VW, Amaravadi RK (2016) Emerging strategies to effectively target autophagy in cancer. Oncogene 35:1–11

    Article  CAS  PubMed  Google Scholar 

  3. Gewirtz DA (2014) The four faces of autophagy: implications for cancer therapy. Cancer Res 74:647–651

    Article  CAS  PubMed  Google Scholar 

  4. Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10:1533–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zachari M, Ganley IG (2017) The mammalian ULK1 complex and autophagy initiation. Essays Biochem 61:585–596

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91

    Article  CAS  PubMed  Google Scholar 

  7. Parekh VV, Pabbisetty SK, Wu L, Sebzda E, Martinez J, Zhang J, Van Kaer L (2017) Autophagy-related protein Vps34 controls the homeostasis and function of antigen cross-presenting CD8α+ dendritic cells. Proc Natl Acad Sci USA 114:E6371–E6380

    Article  CAS  PubMed  Google Scholar 

  8. Jaber N, Zong WX (2013) Class III PI3K Vps34: essential roles in autophagy, endocytosis, and heart and liver function. Ann N Y Acad Sci 1280:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohashi Y, Tremel S, Williams RL (2019) VPS34 complexes from a structural perspective. J Lipid Res 60:229–241

    Article  CAS  PubMed  Google Scholar 

  10. Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, Cantwell J (2014) Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 16:1069–1079

    Article  CAS  PubMed  Google Scholar 

  11. Honda A, Harrington E, Cornella-Taracido I, Furet P, Knapp MS, Glick M, Triantafellow E, Dowdle WE, Wiedershain D, Maniara W, Moore C (2016) Potent, selective, and orally bioavailable inhibitors of VPS34 provide chemical tools to modulate autophagy in vivo. ACS Med Chem Lett 7:72–76

    Article  CAS  PubMed  Google Scholar 

  12. Pasquier B (2015) SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells. Autophagy 11:725–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pasquier B, El-Ahmad Y, Filoche-Romme B, Dureuil C, Fassy F, Abecassis PY, Mathieu M, Bertrand T, Benard T, Barriere C, El Batti S (2015) Discovery of (2 S)-8-[(3R)-3-Methylmorpholin-4-yl]-1-(3-methyl-2-oxobutyl)-2-(trifluoromethyl)-3,4 dihydro-2 H-pyrimido [1, 2-a] pyrimidin-6-one: a novel potent and selective inhibitor of Vps34 for the treatment of solid tumors. J Med Chem 58:376–400

    Article  CAS  PubMed  Google Scholar 

  14. Bago R, Malik N, Munson MJ, Prescott AR, Davies P, Sommer E, Shpiro N, Ward R, Cross D, Ganley IG, Alessi DR (2014) Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem J 463:413–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Limpert AS, Lambert LJ, Bakas NA, Bata N, Brun SN, Shaw RJ, Cosford ND (2018) Autophagy in cancer: regulation by small molecules. Trends Pharmacol Sci 39:1021–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chude CI, Amaravadi RK (2017) Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int J Mol Sci 18:1279

    Article  PubMed Central  Google Scholar 

  17. Kouranov A, Xie L, de la Cruz J, Chen L, Westbrook J, Bourne PE, Berman HM (2006) The RCSB PDB information portal for structural genomics. Nucleic Acids Res 34:D302–D305

    Article  CAS  PubMed  Google Scholar 

  18. Xie XQS (2010) Exploiting PubChem for virtual screening. Expert Opin Drug Discov 5:1205–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234

    Article  PubMed  Google Scholar 

  20. Sastry GM, Dixon SL, Sherman W (2011) Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. J Chem Inf Model 51:2455–2466

    Article  CAS  PubMed  Google Scholar 

  21. Loving K, Salam NK, Sherman W (2009) Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. J Comput Aided Mol Des 23:541–554

    Article  CAS  PubMed  Google Scholar 

  22. Rohini K, Ramanathan K, Shanthi V (2019) Multi-dimensional screening strategy for drug repurposing with statistical framework—a new road to influenza drug discovery. Cell Biochem Biophys 77:319–333

    Article  CAS  PubMed  Google Scholar 

  23. Halgren T (2007) New method for fast and accurate binding-site identification and analysis. Chem Biol Drug Des 69:146–148

    Article  CAS  PubMed  Google Scholar 

  24. Rajamanikandan S, Jeyakanthan J, Srinivasan P (2017) Molecular docking, molecular dynamics simulations, computational screening to design quorum sensing inhibitors targeting LuxP of Vibrio harveyi and its biological evaluation. Appl Biochem 181:192–218

    Article  CAS  Google Scholar 

  25. Salam NK, Nuti R, Sherman W (2009) Novel method for generating structure-based pharmacophores using energetic analysis. J Chem Inf Model 49:2356–2368

    Article  CAS  PubMed  Google Scholar 

  26. Singh KD, Kirubakaran P, Nagarajan S, Sakkiah S, Muthusamy K, Velmurgan D, Jeyakanthan J (2012) Homology modeling, molecular dynamics, e-pharmacophore mapping and docking study of Chikungunya virus nsP2 protease. J Mol Model 18:39–51

    Article  PubMed  Google Scholar 

  27. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Perez-Sanchez HC, Lightstone F (2017) A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Curr Top Med Chem 17:1631–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  PubMed  Google Scholar 

  30. Lyne PD, Lamb ML, Saeh JC (2006) Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 49:4805–4808

    Article  CAS  PubMed  Google Scholar 

  31. Du J, Sun H, Xi L, Li J, Yang Y, Liu H, Yao X (2011) Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM–GBSA calculation. J Comput Chem 32:2800–2809

    Article  CAS  PubMed  Google Scholar 

  32. Kellici TF, Ntountaniotis D, Liapakis G, Tzakos AG, Mavromoustakos T (2019) The dynamic properties of angiotensin II type 1 receptor inverse agonists in solution and in the receptor site. Arab J Chem 12:5062–5078

    Article  CAS  Google Scholar 

  33. Sirin S, Kumar R, Martinez C, Karmilowicz MJ, Ghosh P, Abramov YA, Martin V, Sherman W (2014) A computational approach to enzyme design: predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring. J Chem Inf Model 54:2334–2346

    Article  CAS  PubMed  Google Scholar 

  34. Hodgson J (2001) ADMET - turning chemicals into drugs. Nat Biotechnol 19:722–726

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Xing J, Xu Y, Zhou N, Peng J, Xiong Z, Liu X, Luo X, Luo C, Chen K, Zheng M (2015) In silico ADME/T modelling for rational drug design. Q Rev Biophys 48:488–515

    Article  PubMed  Google Scholar 

  36. Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:W257–W263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16:747–748

    Article  CAS  PubMed  Google Scholar 

  38. Mu P, Karuppasamy R (2019) Discovery of human autophagy initiation kinase ULK1 inhibitors by multi-directional in silico screening strategies. J Recept Sig Transd 39:122–133

    Article  CAS  Google Scholar 

  39. James N, Ramanathan K (2018) Ligand-based pharmacophore screening strategy: a pragmatic approach for targeting HER proteins. Appl Biochem Biotechnol 186:85–108

    Article  CAS  PubMed  Google Scholar 

  40. Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature 347:631–639

    Article  CAS  PubMed  Google Scholar 

  41. Schüttelkopf AW, Van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D 60:1355–1363

    Article  PubMed  Google Scholar 

  42. Kumar A, Rajendran V, Sethumadhavan R, Purohit R (2013) Molecular dynamic simulation reveals damaging impact of RAC1 F28L mutation in the switch I region. PLoS ONE 8:1

    Article  Google Scholar 

  43. Rizzi A, Fioni A (2008) Virtual screening using PLS discriminant analysis and ROC curve approach: an application study on PDE4 inhibitors. J Chem Info Model 48:1686–1692

    Article  CAS  Google Scholar 

  44. Pasquier B (2016) Autophagy inhibitors. Cell Mol Life Sci 73:985–1001

    Article  CAS  PubMed  Google Scholar 

  45. Gudipati S, Muttineni R, Mankad AU, Pandya HA, Jasrai YT (2018) Molecular docking based screening of Noggin inhibitors. Bioinformation 14:15

    Article  PubMed  PubMed Central  Google Scholar 

  46. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296

    Article  CAS  PubMed  Google Scholar 

  47. Borkotoky S, Meena CK, Murali A (2016) Interaction analysis of T7 RNA polymerase with heparin and its low molecular weight derivatives–an in silico approach. Bioinform Biol Insights 10:BBI-B40427

    Article  Google Scholar 

  48. Greenidge PA, Kramer C, Mozziconacci JC, Wolf RM (2013) MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. J Chem Inf Model 53:201–209

    Article  CAS  PubMed  Google Scholar 

  49. Li J, Zhou N, Luo K, Zhang W, Li X, Wu C, Bao J (2014) In silico discovery of potential VEGFR-2 inhibitors from natural derivatives for anti-angiogenesis therapy. Int J Mol Sci 15:15994–16011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zahedi S, Fitzwalter BE, Morin A, Grob S, Desmarais M, Nellan A, Green AL, Vibhakar R, Hankinson TC, Foreman NK, Levy JMM (2019) Effect of early-stage autophagy inhibition in BRAF V600E autophagy-dependent brain tumor cells. Cell Death Dis 10:1–15

    Article  CAS  Google Scholar 

  51. Kondapuram SK, Sarvagalla S, Coumar MS (2019) Targeting autophagy with small molecules for cancer therapy. J Cancer Metastasis Treat 5:32

    CAS  Google Scholar 

  52. McNair TJ, Wibin FA, Hoppe ET, Schmidt JL, DePeyster FA (1963) Antitumor action of several new piperazine derivatives compared to certain standard anti-cancer agent. J Surg Res 3:130–136

    Article  CAS  PubMed  Google Scholar 

  53. Rush TS, Grant JA, Mosyak L, Nicholls A (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein–protein interaction. J Med Chem 48:1489–1495

    Article  CAS  PubMed  Google Scholar 

  54. Preston-Martin S, Pike MC, Ross RK, Jones PA, Henderson BE (1990) Increased cell division as a cause of human cancer. Cancer Res 50:7415–7421

    CAS  PubMed  Google Scholar 

  55. Imani S, Cheng J, Shasaltaneh MD, Wei C, Yang L, Fu S, Zou H, Khan MA, Zhang X, Chen H, Zhang D (2018) Genetic identification and molecular modeling characterization reveal a novel PROM1 mutation in Stargardt4-like macular dystrophy. Oncotarget 9:122

    Article  PubMed  Google Scholar 

  56. Guan S, Xu Y, Qiao Y, Kuai Z, Qian M, Jiang X, Wang S, Zhang H, Kong W, Shan Y (2017) Exploration of binding and inhibition mechanism of a small molecule inhibitor of influenza virus H1N1 hemagglutinin by molecular dynamics simulation. Sci Rep 7:1–14

    Article  Google Scholar 

  57. Cloete R, Akurugu WA, Werely CJ, van Helden PD, Christoffels A (2017) Structural and functional effects of nucleotide variation on the human TB drug metabolizing enzyme arylamine N-acetyltransferase 1. J Mol Graph Model 75:330–339

    Article  CAS  PubMed  Google Scholar 

  58. Singh A, Singh A, Grover S, Pandey B, Kumari A, Grover A (2018) Wild-type catalase peroxidase vs G279D mutant type: molecular basis of Isoniazid drug resistance in Mycobacterium tuberculosis. Gene 641:226–234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

K.V and T.R of the manuscript would like to thank the management of Chulalongkorn University (CU) for providing the facility and support to carry out this work. K.V would also like to thank Ratchadapisek Somphot Fund for the postdoctoral fellowship and the Structural and Computational Biology Research Unit, Faculty of Science, CU, for facility and computing resources.

Funding

The authors P.Mu and R.K thank VIT for providing ‘VIT SEED GRANT’ for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanathan Karuppasamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 1365 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali, P., Verma, K., Rungrotmongkol, T. et al. Targeting the Autophagy Specific Lipid Kinase VPS34 for Cancer Treatment: An Integrative Repurposing Strategy. Protein J 40, 41–53 (2021). https://doi.org/10.1007/s10930-020-09955-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09955-4

Keywords

Navigation