Skip to main content

Advertisement

Log in

Network pharmacology, molecular docking, and molecular dynamics simulation analysis reveal the molecular mechanism of halociline against gastric cancer

  • Perspective
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Halociline, a derivative of alkaloids, was isolated from the marine fungus Penicillium griseofulvum by our group. This remarkable compound exhibits promising antineoplastic activity, yet the precise molecular mechanisms underlying its anticancer properties remain enigmatic. To unravel these mechanisms, we employed an integrated approach of network pharmacology analysis, molecular docking simulations, and molecular dynamics simulations to explore halociline therapeutic targets for gastric cancer. The data from network pharmacology indicate that halociline targets MAPK1, MMP-9, and PIK3CA in gastric cancer cells, potentially mediated by diverse pathways including cancer, lipid metabolism, atherosclerosis, and EGFR tyrosine kinase inhibitor resistance. Notably, molecular docking and dynamics simulations revealed a high affinity between halociline and these targets, with free binding energies (ΔEtotal) of − 20.28, − 27.94, and − 25.97 kcal/mol for MAPK1, MMP-9, and PIK3CA, respectively. This study offers valuable insights into the potential molecular mechanism of halociline’s inhibition of gastric cancer cells and serves as a valuable reference for future basic research efforts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu C, Li M, Meng H et al (2019) Analysis of status and countermeasures of cancer incidence and mortality in China. Sci Chin Lif Sci 62:640–647. https://doi.org/10.1007/s11427-018-9461-5

    Article  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  3. Dai X, Zhang X, Chen W et al (2021) Dihydroartemisinin: a potential natural anticancer drug. Inter J Bio Sci 17(2):603–622. https://doi.org/10.7150/ijbs.50364

    Article  CAS  Google Scholar 

  4. Zha X, Ji R, Zhou S (2023) Marine bacteria: a source of novel bioactive natural products. Cur Med Chem. https://doi.org/10.2174/0929867331666230821102521

    Article  Google Scholar 

  5. Zhao HG, Ji R, Zha XR et al (2022) Investigation of the bactericidal mechanism of Penicilazaphilone C on Escherichia coli based on 4D label-free quantitative proteomic analysis. Eur J Pharm Sci 179:106299. https://doi.org/10.1016/j.ejps.2022.106299

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Carroll AR, Copp BR, Davis RA et al (2022) Marine natural products. Nat Prod Pep 39:1122–1171. https://doi.org/10.1039/d1np00076d

    Article  CAS  Google Scholar 

  7. Shabana S, Lakshmi KR, Satya AK (2021) An updated review of secondary metabolites from marine fungi. Min Rev Med Chem 21:602–642. https://doi.org/10.2174/1389557520666200925142514

    Article  CAS  Google Scholar 

  8. Abdel Razek MMM, Moussa AY, El-Shanawany MA, Singab ANB (2020) A new phenolic alkaloid from Halocnemum strobilaceum endophytes: antimicrobial, antioxidant and biofilm inhibitory activities. Chem Biodiv 17:e2000496. https://doi.org/10.1002/cbdv.202000496

    Article  CAS  Google Scholar 

  9. Liu J, Sun T, Liu S et al (2022) Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation. Comp Biol Med 151:106298. https://doi.org/10.1016/j.compbiomed.2022.106298

    Article  CAS  Google Scholar 

  10. Li X, Wei S, Niu S et al (2022) Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu decoction against sepsis. Comp Biol Med 144:105389. https://doi.org/10.1016/j.compbiomed.2022.105389

    Article  CAS  Google Scholar 

  11. Chen G, Seukep AJ, Guo M (2020) Recent advances in molecular docking for the research and discovery of potential marine drugs. Mar Drugs 18:545. https://doi.org/10.3390/md18110545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Amin MR, Yasmin F, Hosen MA et al (2021) Synthesis, antimicrobial, anticancer, pass, molecular docking, molecular dynamic simulations & pharmacokinetic predictions of some methyl β-d-galactopyranoside analogs. Molecules 26:7016. https://doi.org/10.3390/molecules26227016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dixon T, MacPherson D, Mostofian B et al (2022) Predicting the structural basis of targeted protein degradation by integrating molecular dynamics simulations with structural mass spectrometry. Nat Comm 13:5884. https://doi.org/10.1038/s41467-022-33575-4

    Article  ADS  CAS  Google Scholar 

  14. Zhou W, Zhang H, Wang X et al (2022) Network pharmacology to unveil the mechanism of Moluodan in the treatment of chronic atrophic gastritis. Phytomed Int J Phytoth Phytopharm 95:153837. https://doi.org/10.1016/j.phymed.2021.153837

    Article  CAS  Google Scholar 

  15. Han J, Hou J, Liu Y et al (2022) Using network pharmacology to explore the mechanism of panax notoginseng in the treatment of myocardial fibrosis. J Diabetes Res 2022:8895950. https://doi.org/10.1155/2022/8895950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu Z, Huang M, Lin H et al (2022) Network pharmacology and molecular docking approach to elucidate the mechanisms of Liuwei Dihuang pill in diabetic osteoporosis. J Orth Surg Res 17:314. https://doi.org/10.1186/s13018-022-03194-2

    Article  Google Scholar 

  17. Wang HN, Sun SS, Liu MZ et al (2022) Natural bioactive compounds from marine fungi (2017–2020). J Asian Nat Prod Res 24:203–230. https://doi.org/10.1080/10286020.2021.1947254

    Article  CAS  PubMed  Google Scholar 

  18. Xu Z, Zha XR, Ji R et al (2023) Green biosynthesis of silver nanoparticles using aqueous extracts of ageratum conyzoides and their anti-inflammatory effects. Acs Appl Mater Inter 15:13983–13992. https://doi.org/10.1021/acsami.2c22114

    Article  CAS  Google Scholar 

  19. Liu JQ, Sun TL, Liu S et al (2022) Dissecting the molecular mechanism of cepharanthine against COVID-19 based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation. Comput Biol Med 151:106298. https://doi.org/10.1016/j.compbiomed.2022.106298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu J, Liu J, Tong X et al (2021) Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of huai hua san against ulcerative colitis. Drug Des Devel Ther 15:3255–3276. https://doi.org/10.2147/dddt.S319786

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bekeschus S, Poschkamp B, van der Linde J (2021) Medical gas plasma promotes blood coagulation via platelet activation. Biomaterials 278:120433. https://doi.org/10.1016/j.biomaterials.2020.120433

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Tang H, Tang Q, Chen W (2021) Decoding the mechanism of Huanglian Jiedu decoction in treating pneumonia based on network pharmacology and molecular docking. Front Cell Devel Biol 9:638366. https://doi.org/10.3389/fcell.2021.638366

    Article  Google Scholar 

  23. Zeng Z, Hu J, Jiang J et al (2021) Network pharmacology and molecular docking-based prediction of the mechanism of Qianghuo Shengshi decoction against Rheumatoid Arthritis. BioMed Res Int 2021:6623912. https://doi.org/10.1155/2021/6623912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou SL, Wang M, Zhao HG et al (2016) Penicilazaphilone C, a new antineoplastic and antibacterial azaphilone from the Marine Fungus Penicillium sclerotiorum. Arch Pharm Res 39:1621–1627. https://doi.org/10.1007/s12272-016-0828-3

    Article  CAS  PubMed  Google Scholar 

  25. Jiang T, Xia Y, Lv J et al (2021) A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Can 20:66. https://doi.org/10.1186/s12943-021-01358-y

    Article  CAS  Google Scholar 

  26. Li M, Cai O, Yu Y, Tan S (2022) Paeonol inhibits the malignancy of Apatinib-resistant gastric cancer cells via LINC00665/miR-665/MAPK1 axis. Phytomed Int J Phytoth Phytopharm 96:153903. https://doi.org/10.1016/j.phymed.2021.153903

    Article  CAS  Google Scholar 

  27. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67. https://doi.org/10.1016/j.cell.2010.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu L, Ye Y, Zhu X (2019) MMP-9 secreted by tumor associated macrophages promoted gastric cancer metastasis through a PI3K/AKT/Snail pathway. Biomed Pharmacoth 117:109096. https://doi.org/10.1016/j.biopha.2019.109096

    Article  CAS  Google Scholar 

  29. Liu H, Tian Q, Ai X, Qin Y et al (2017) Dihydroartemisinin attenuates autoimmune thyroiditis by inhibiting the CXCR3/PI3K/AKT/NF-κB signaling pathway. Oncotarget. 8:115028–40. https://doi.org/10.18632/oncotarget.22854

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hall DCN, Benndorf RA (2022) Aspirin sensitivity of PIK3CA-mutated colorectal cancer: potential mechanisms revisited. Cell Mol Lif Sci 79:393. https://doi.org/10.1007/s00018-022-04430-y

    Article  CAS  Google Scholar 

  31. Ghojazadeh M, Somi MH, Naseri A et al (2022) Systematic review and meta-analysis of TP53, HER2/ERBB2, KRAS, APC, and PIK3CA genes expression pattern in gastric cancer. Mid East J Dig Dis 14:335–45. https://doi.org/10.34172/mejdd.2022.292

    Article  Google Scholar 

Download references

Funding

This study was supported by the Hainan Province Science and Technology Special Fund (Grant Nos. ZDYF2021SHFZ235, ZDYF2023SHFZ114) and the Hainan Provincial National Natural Science Foundation of China (Grant No. 522RC684).

Author information

Authors and Affiliations

Authors

Contributions

RJ and SLZ contributed to conceptualization, supervision, investigation. XRZ and YL conducted molecular docking and dynamics studies. RJ and RC performed network pharmacology and analysis. RJ, XRZ, and YL performed methodology, software data analysis. XRZ and SLZ contributed to writing—original draft preparation.

Corresponding author

Correspondence to Songlin Zhou.

Ethics declarations

Conflict of interests

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, X., Ji, R., Li, Y. et al. Network pharmacology, molecular docking, and molecular dynamics simulation analysis reveal the molecular mechanism of halociline against gastric cancer. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10822-y

Keywords

Navigation