Skip to main content

Advertisement

Log in

In silico and network pharmacology analysis of fucosterol: a potent anticancer bioactive compound against HCC

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The Fucaceae family of marine brown algae includes Ascophyllum nodosum. Fucosterol (FSL) is a unique bioactive component that was identified through GC-MS analysis of the hydroalcoholic extract of A. nodosum. Fucosterol's mechanism of action towards hepatocellular cancer was clarified using network pharmacology and docking study techniques. The probable target gene of FSL has been predicted using the TargetNet and SwissTargetPred databases. GeneCards and the DisGNet database were used to check the targeted genes of FSL. By using the web programme Venny 2.1, the overlaps of FSL and HCC disease demonstrated that 18 genes (1.3%) were obtained as targeted genes Via the STRING database, a protein–protein interaction (PPI) network with 18 common target genes was constructed. With the aid of CytoNCA, hub genes were screened using the Cytoscape software, and the targets' hub genes were exported into the ShinyGo online tool for study of KEGG and gene ontology enrichment. Using the software AutoDock, a hub gene molecular docking study was performed. Ten genes, including AR, CYP19A1, ESR1, ESR2, TNF, PPARA, PPARG, HMGCR, SRC, and IGF1R, were obtained. The 10 targeted hubs docked with FSL successfully. The active components FSL of ASD, the FSL, are engaged in fatty liver disease, cancer pathways, and other signalling pathways, which could prove beneficial for the management of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from public databases.

References

  1. Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15:599–616. https://doi.org/10.1038/s41571-018-0073-4.

    Article  PubMed  Google Scholar 

  2. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019. https://doi.org/10.1056/NEJMra1713263.

    Article  PubMed  Google Scholar 

  3. Neophytou CM, Panagi M, Stylianopoulos T, Papageorgis P. The role of tumor microenvironment in cancer metastasis: molecular mechanisms and therapeutic opportunities. Cancers. 2021;13(9):2053. https://doi.org/10.3390/cancers13092053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Le Grazie M, Biagini MR, Tarocchi M, Polvani S, Galli A. Chemotherapy for hepatocellular carcinoma: the present and the future. World J Hepatol. 2017;9(21):907. https://doi.org/10.4254/wjh.v9.i21.907.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Raza A, Sood GK. Hepatocellular carcinoma review: current treatment and evidence-based medicine. World J Gastroenterol. 2014;20(15):4115–27. https://doi.org/10.3748/wjg.v20.i15.4115.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen CP. Role of radiotherapy in the treatment of hepatocellular carcinoma. J Clin Transl Hepatol. 2019;7(2):183. https://doi.org/10.14218/JCTH.2018.00060.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu JKH, Irvine AF, Jones RL, Samson A. Immunotherapies for hepatocellular carcinoma. Cancer Med. 2022;11(3):571–91. https://doi.org/10.1002/cam4.4468.

    Article  CAS  PubMed  Google Scholar 

  8. Xiang Y, Guo Z, Zhu P, Chen J, Huang Y. Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science. Cancer Med. 2019;8(5):1958–75. https://doi.org/10.1002/cam4.2108.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ugarte RA, Craigie JS, Critchley AT. Fucoid flora of the rocky intertidal of the Canadian Maritimes: implications for the future with rapid climate change. Seaweeds Role Glob Chang Environ. 2010. https://doi.org/10.1007/978-90-481-8569-6_5.

    Article  Google Scholar 

  10. Gull N, Arshad F, Naikoo GA. Recent advances in anticancer activity of novel plant extracts and compounds from curcuma longa in hepatocellular carcinoma. J Gastrointest Cancer. 2022. https://doi.org/10.1007/s12029-022-00809-z.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Iqbal J, Abbasi BA, Ahmad R, Mahmood T, Kanwal S, Ali B, Khalil AT, Shah SA, Alam MM, Badshah H. Ursolic acid a promising candidate in the therapeutics of breast cancer: current status and future implications. Biomed Pharmacother. 2018;108:752 6. https://doi.org/10.1016/j.biopha.2018.09.096.

    Article  CAS  PubMed  Google Scholar 

  12. Agarwal G, Carcache PJB, Addo EM, Kinghorn AD. Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnol Adv. 2020;38:107337. https://doi.org/10.1016/j.biotechadv.2019.01.004.

    Article  CAS  PubMed  Google Scholar 

  13. Iqbal J, Abbasi BA, Batool R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Ahmad R. Potential phytocompounds for developing breast cancer therapeutics: nature’s healing touch. Eur J Pharmacol. 2018;827:125–48. https://doi.org/10.1016/j.ejphar.2018.03.007.

    Article  CAS  PubMed  Google Scholar 

  14. Avtanski D, Poretsky L. Phyto-polyphenols as potential inhibitors of breast cancer metastasis. Mol Med. 2018;24(1):1–17. https://doi.org/10.1186/s10020-018-0032-7.

    Article  CAS  Google Scholar 

  15. Shehzad A, Qureshi M, Anwar MN, Lee YS. Multifunctional curcumin mediate multitherapeutic effects. J Food Sci. 2017;82(9):2006–15. https://doi.org/10.1111/1750-3841.13793.

    Article  CAS  PubMed  Google Scholar 

  16. Pan Z, Zhuang J, Ji C, Cai Z, Liao W, Huang Z. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol Lett. 2018;15(4):4821–6. https://doi.org/10.3892/ol.2018.7988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu MX, Zhao L, Deng C, Yang LU, Wang Y, Guo T, Li L, Lin J, Zhang L. Curcumin suppresses proliferation and induces apoptosis of human hepatocellular carcinoma cells via the wnt signaling pathway. Int J Oncol. 2013;43(6):1951–9. https://doi.org/10.3892/ijo.2013.2107.

    Article  CAS  PubMed  Google Scholar 

  18. Teng CF, Yu CH, Chang HY, Hsieh WC, Wu TH, Lin JH, Wu HC, Jeng LB, Su IJ. Chemopreventive effect of phytosomal curcumin on hepatitis B virus-related hepatocellular carcinoma in a transgenic mouse model. Sci Rep. 2019;9(1):10338. https://doi.org/10.1038/s41598-019-46891-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matias D, Rijo P, Pinto RC. Phytosomes as biocompatible carriers of natural drugs. Curr Med Chem. 2017;24(6):568–89. https://doi.org/10.2174/0929867323666161028160855.

    Article  CAS  PubMed  Google Scholar 

  20. Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother. 2017;129:101 7. https://doi.org/10.1016/j.carbpol.2015.04.057.

    Article  CAS  Google Scholar 

  21. Yuan Y, Macquarrie D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr Polym. 2015;129:101 7. https://doi.org/10.1016/j.carbpol.2015.04.057.

    Article  CAS  PubMed  Google Scholar 

  22. Venardou B, O’Doherty JV, Garcia-Vaquero M, Kiely C, Rajauria G, McDonnell MJ, Ryan MT, Sweeney T. Evaluation of the antibacterial and prebiotic potential of Ascophyllum nodosum and its extracts using selected bacterial members of the pig gastrointestinal microbiota. Mar Drugs. 2021;20(1):41. https://doi.org/10.3390/md20010041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ajah HA. In vitro and in vivo studies on the antifungal activity of probiotics and seaweed extract (Ascophyllum nodosum). Int J Innov Sci Eng Technol. 2016;3(4):306–12.

    Google Scholar 

  24. Chauhan BS, Kumar R, Kumar P, Kumar P, Sinha S, Mishra SK, Tiwari KN, Critchley AT, Prithiviraj B, Srikrishna S. Neuroprotective potential of flavonoid rich Ascophyllum nodosum (FRAN) fraction from the brown seaweed on an Aβ42 induced Alzheimer’s model of Drosophila. Phytomed. 2022;95:153872. https://doi.org/10.1016/j.phymed.2021.153872.

    Article  CAS  Google Scholar 

  25. Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;42(W1):W32–8. https://doi.org/10.1093/nar/gkz382.

    Article  CAS  Google Scholar 

  26. Zhi-Jiang Y, Jie D, Yu-Jing C, Min-Feng Z, Ming W, Ning-Ning W, Shan W, Ai-Ping Lu, Cao D-S. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models. J Comput Aided Mol Des. 2016;30:413–24. https://doi.org/10.1007/s10822-016-9915-2.

    Article  CAS  Google Scholar 

  27. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N, Bahir I, Doniger T, Krug H, Sirota-Madi A. GeneCards version 3: the human gene integrator. Database. 2010. https://doi.org/10.1093/database/baq020.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Piñero J, Saüch J, Sanz F, Furlong LI. The DisGeNET cytoscape app: exploring and visualizing disease genomics data. Comput Struct Biotechnol J. 2021;19(7789):2960–7. https://doi.org/10.1016/j.csbj.2021.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lotia S, Montojo J, Dong Y, Bader GD, Pico AR. Cytoscape app store. Bioinformatics. 2013;29(10):1350–1. https://doi.org/10.1093/bioinformatics/btt138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628–9. https://doi.org/10.1093/bioinformatics/btz931.

    Article  CAS  PubMed  Google Scholar 

  31. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019. https://doi.org/10.1093/bioinformatics/btz931.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK, Bedi YS, Taneja SC, Bhat HK. Medicinal plants and cancer chemoprevention. Curr Drug Metab. 2008;9(7):581–91. https://doi.org/10.2174/138920008785821657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meinita MDN, Harwanto D, Tirtawijaya G, Negara BFSP, Sohn JH, Kim JS, Choi JS. Fucosterol of marine macroalgae: bioactivity, safety and toxicity on organism. Mar Drugs. 2021;19(10):545. https://doi.org/10.3390/md19100545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang J, Lv J, Liu Z. Identification of dysfunctional biological pathways and their synergistic mechanism in hepatocellular carcinoma process. Exp Mol Pathol. 2015;98(3):540–5. https://doi.org/10.1016/j.yexmp.2015.03.028.

    Article  CAS  PubMed  Google Scholar 

  35. Hishida M, Nomoto S, Inokawa Y, Hayashi M, Kanda M, Okamura Y, Nishikawa Y, Tanaka C, Kobayashi D, Yamada S, Nakayama G, Fujii T, Sugimoto H, Koike M, Fujiwara M, Takeda S, Kodera Y. Estrogen receptor 1 gene as a tumor suppressor gene in hepatocellular carcinoma detected by triple-combination array analysis. Int J Oncol. 2013;43(1):88–94. https://doi.org/10.3892/ijo.2013.1951.

    Article  CAS  PubMed  Google Scholar 

  36. Villa E, Moles A, Ferretti I, Buttafoco P, Grottola A, Buono M, De Santis M, Manenti F. Natural history of inoperable hepatocellular carcinoma: estrogen receptors’ status in the tumor is the strongest prognostic factor for survival. Hepatology. 2000;32(2):233–8. https://doi.org/10.1053/jhep.2000.9603.

    Article  CAS  PubMed  Google Scholar 

  37. Kocanova S, Mazaheri M, Caze-Subra S, Bystricky K. Ligands specify estrogen receptor alpha nuclear localization and degradation. BMC Cell Biol. 2010;11:98. https://doi.org/10.1186/1471-2121-11-98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ochiai I, Matsuda K, Nishi M, Ozawa H, Kawata M. Imaging analysis of subcellular correlation of androgen receptor and estrogen receptor alpha in single living cells using green fluorescent protein color variants. Mol Endocrinol. 2004;18(1):26–42. https://doi.org/10.1210/me.2002-0262.

    Article  CAS  PubMed  Google Scholar 

  39. Helsen C, Kerkhofs S, Clinckemalie L, Spans L, Laurent M, Boonen S, Vanderschueren D, Claessens F. Structural basis for nuclear hormone receptor DNA binding. Mol Cell Endocrinol. 2012;348(2):411–7. https://doi.org/10.1016/j.mce.2011.07.025.

    Article  CAS  PubMed  Google Scholar 

  40. Lonard DM, O’Malley BW. The expanding cosmos of nuclear receptor coactivators. Cell. 2006;125(3):411–4. https://doi.org/10.1016/j.cell.2006.04.021.

    Article  CAS  PubMed  Google Scholar 

  41. Gadaleta RM, Magnani L. Nuclear receptors and chromatin: an inducible couple. J Mol Endocrinol. 2014;52(2):R137–49. https://doi.org/10.1530/JME-13-0170.

    Article  CAS  PubMed  Google Scholar 

  42. Kininis M, Kraus WL. A global view of transcriptional regulation by nuclear receptors: gene expression, factor localization, and dna sequence analysis. Nucl Recept Signal. 2008;6:e005. https://doi.org/10.1621/nrs.06005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Clocchiatti A, Cora E, Zhang Y, Dotto GP. Sexual dimorphism in cancer. Nat Rev Cancer. 2016;16(5):330–9. https://doi.org/10.1038/nrc.2016.30.

    Article  CAS  PubMed  Google Scholar 

  44. Tiegs G, Horst AK. TNF in the liver: targeting a central player in inflammation. Semin Immunopathol. 2022;44:445–59. https://doi.org/10.1007/s00281-022-00910-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang C, Lee SO, Yeh S, Chang TM. Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver. Oncogene. 2014;33(25):3225–34. https://doi.org/10.1038/onc.2013.274.

    Article  CAS  PubMed  Google Scholar 

  46. Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol. 2002;20(13):3001–15. https://doi.org/10.1200/JCO.2002.10.018.

    Article  CAS  PubMed  Google Scholar 

  47. Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25(2):276–308. https://doi.org/10.1210/er.2002-0032.

    Article  CAS  PubMed  Google Scholar 

  48. Yoon G, Kim JY, Choi YK, Won YS, Lim IK. Direct activation of TGF-beta1 transcription by androgen and androgen receptor complex in Huh7 human hepatoma cells and its tumor in nude mice. J Cell Biochem. 2006;97(2):393–411. https://doi.org/10.1002/jcb.20638.

    Article  CAS  PubMed  Google Scholar 

  49. Bolton EC, So AY, Chaivorapol C, Haqq CM, Li H, Yamamoto KR. Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev. 2007;21(16):2005–17. https://doi.org/10.1101/gad.1564207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang X, Kanda T, Nakamoto S, Miyamura T, Wu S, Yokosuka O. Involvement of androgen receptor and glucose-regulated protein 78 kDa in human hepatocarcinogenesis. Exp Cell Res. 2014;323(2):326–36. https://doi.org/10.1016/j.yexcr.2014.02.017.

    Article  CAS  PubMed  Google Scholar 

  51. Nagasue N, Ito A, Yukaya H, Ogawa Y. Androgen receptors in hepatocellular carcinoma and surrounding parenchyma. Gastroenterology. 1985;89(3):643–7. https://doi.org/10.1016/0016-5085(85)90463-9.

    Article  CAS  PubMed  Google Scholar 

  52. Kaewlert W, Sakonsinsiri C, Namwat N, Sawanyawisuth K, Ungarreevittaya P, Khuntikeo N, Armartmuntree N, Thanan R. The importance of CYP19A1 in estrogen receptor-positive cholangiocarcinoma. Horm Canc. 2018;9(6):408–19. https://doi.org/10.1007/s12672-018-0349-2.

    Article  CAS  Google Scholar 

  53. Ngo MHT, Jeng HY, Kuo YC, Nanda JD, Brahmadhi A, Ling TY, Chang TS, Huang YH. The role of IGF/IGF-1R signaling in hepatocellular carcinomas: stemness-related properties and drug resistance. Int J Mol Sci. 2021;22(4):1931. https://doi.org/10.3390/ijms22041931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu L, Guo C, Wu J. Therapeutic potential of PPARγ natural agonists in liver diseases. J Cell Mol Med. 2020;24(5):2736–48. https://doi.org/10.1111/jcmm.15028.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang S, Yu D. Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. Trends Pharmacol Sci. 2012;33(3):122–8. https://doi.org/10.1016/j.tips.2011.11.002.

    Article  CAS  PubMed  Google Scholar 

  56. Kumar P, Singh AK, Verma P, Tiwari KN, Mishra SK. Network pharmacology-based study on apigenin present in the methanolic fraction of leaves extract of Cestrum nocturnum L. to uncover mechanism of action on hepatocellular carcinoma. Med Oncol. 2022. https://doi.org/10.1007/s12032-022-01759-z.

    Article  PubMed  Google Scholar 

  57. Kumar P, Singh AK, Tiwari KN, et al. Identification and validation of hub genes as promising diagnostic signature in hepatocellular carcinoma based on integrated bioinformatics approach. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-22059-6.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Van Diepen JA, Jansen PA, Ballak DB, Hijmans A, Hooiveld GJ, Rommelaere S, Galland F, Naquet P, Rutjes FP, Mensink RP, Schrauwen P, Tack CJ, Netea MG, Kersten S, Schalkwijk J, Stienstra R. PPAR-alpha dependent regulation of vanin-1 mediates hepatic lipid metabolism. J Hepatol. 2014;61(2):366–72. https://doi.org/10.1016/j.jhep.2014.04.013.

    Article  CAS  PubMed  Google Scholar 

  59. Palmer CNA, Hsu M-H, Griffin KJ, Johnson EF. Novel sequence determinants in peroxisome proliferator signaling. J Biol Chem. 1995;270(27):16114–21. https://doi.org/10.1074/jbc.270.27.16114.

    Article  CAS  PubMed  Google Scholar 

  60. Cheng B, Li T, Li F. Use of network pharmacology to investigate the mechanism by which allicin ameliorates lipid metabolism disorder in hepg2 cells. Evid Based Complement Alternat Med. 2021;2021(12):3956504. https://doi.org/10.1155/2021/3956504.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Berger A, Monnard I, Baur M, Charbonnet C, Safonova I, Jomard A. Epidermal anti-inflammatory properties of 5,11,14 20:3: effects on mouse ear edema, PGE2 levels in cultured keratinocytes, and PPAR activation. Lipids Health Dis. 2002;1(1):5. https://doi.org/10.1186/1476-511x-1-5.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Progress Lipid Res. 2006;45(2):120–59. https://doi.org/10.1016/j.plipres.2005.12.002.

    Article  CAS  Google Scholar 

  63. Tan Y, Wang M, Yang K, Chi T, Liao Z, Wei P. PPAR-α modulators as current and potential cancer treatments. Front Oncol. 2021;23(11):599995. https://doi.org/10.3389/fonc.2021.599995.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Kajal Singh gratefully to acknowledge to Department of pharmaceutical engineering and Technology, IIT, BHU, Department of Botany, MMV, BHU, and Galgotias University, Greater Noida, Uttar Pradesh for their immense support. Author Amit Kumar Singh acknowledge the MHRD, New Delhi for Funding support. Author Pradeep Kumar Highly thankful to University Grant Commission, New Delhi for providing Rajiv Gandhi National Fellowship.

Funding

The research involved no particular grants either public, commercial, or non-profit financing entities.

Author information

Authors and Affiliations

Authors

Contributions

KS, PK, and AKS designed the concept of work, NS, SS, SA, and RD: Data analysis, interpretation of results, and manuscript preparation, SA, RD, SS, and NS: extract preparation and data interpretation, SKM and KNT, AKT, BR, and AS: designed the work and reviewed the manuscript.

Corresponding author

Correspondence to Sunil Kumar Mishra.

Ethics declarations

Conflict of interest

There is no conflict of interest in between author.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Research involving human participants and/or animals

This study does not contain any studies with human participants or animals performed by the author.

Consent to participant

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6946 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Kumar, P., Singh, A.K. et al. In silico and network pharmacology analysis of fucosterol: a potent anticancer bioactive compound against HCC. Med Oncol 41, 130 (2024). https://doi.org/10.1007/s12032-024-02374-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02374-w

Keywords

Navigation