Skip to main content
Log in

Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study investigates Li+ ion-conducting biopolymer blend electrolytes-based on chitosan (CS) and potato starch (PS) with glycerol plasticization. The advanced techniques including FTIR, impedance, TNM, LSV, and CV were employed to characterize the compositional and electrochemical properties of the solid films. The FTIR analysis indicates significant influence of glycerol on polymer/salt interactions, evidenced by the shift of FTIR bands to lower wavenumbers, signifying an increase in free ions within the host polymer system. Impedance results indicate that plasticizer addition reduces the bulk resistance to an optimum value of 49 Ω. The calculated DC values demonstrate the suitability of the electrolyte for use in energy storage applications (ESAs) with the highest ionic conductivity of 2.01 × 10−4 S cm−1. The high values of both \({\epsilon }^{{\prime }}\) and \({\epsilon }^{{\prime }{\prime }}\) at lower frequencies are due to interfacial polarization and the accumulation of charges, respectively. The sample with the largest plasticizer content has shown the highest \({\epsilon }^{{\prime }}\) of 112.4 at 105 Hz. The shifting of tan δ peaks to the higher frequency side with the increase of plasticizer indicates an increase in the mobility of cations. The combination of tan δ plot and Argand plot was used to explore the dominant mechanism in ion conduction. The electrochemical studies were performed to detect the ability of the films to be used for EDLC applications. The TNM (tion=0.947) and LSV (decomposition voltage = 3.1 V) values favor the films for ESAs. The pattern of CV curves at various scan rates established the successful design of the EDLC device. The calculated capacitance from the area under CV curves is sufficiently high. The capacitance was influenced by scan rates and changed from 12.92 to 38.68 F/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ma X, Yu J, He K, Wang N (2007) The effects of different plasticizers on the properties of thermoplastic starch as solid polymer electrolytes. Macromol Mater Eng 292:503–510. https://doi.org/10.1002/mame.200600445

    Article  CAS  Google Scholar 

  2. Ma X, Yu J, Zhao A (2006) Properties of biodegradable poly(propylene carbonate)/starch composites with succinic anhydride. Compos Sci Technol 66:2360–2366. https://doi.org/10.1016/j.compscitech.2005.11.028

    Article  CAS  Google Scholar 

  3. Yoon S, Ahmed F, Zhang W, Ryu T, Jin L, Kim D et al (2020) Flexible blend polymer electrolyte membranes with excellent conductivity for fuel cells. Int J Hydrogen Energy 45:27611–27621. https://doi.org/10.1016/j.ijhydene.2020.07.076

    Article  CAS  Google Scholar 

  4. Li L, Wang F, Li J, Yang X, You J (2017) Electrochemical performance of gel polymer electrolyte with ionic liquid and PUA/PMMA prepared by ultraviolet curing technology for lithium-ion battery. Int J Hydrogen Energy 42:12087–12093. https://doi.org/10.1016/j.ijhydene.2017.02.085

    Article  CAS  Google Scholar 

  5. Zainuddin NK, Rasali NMJ, Mazuki NF, Saadiah MA, Samsudin AS (2020) Investigation on favourable ionic conduction based on CMC-K carrageenan proton conducting hybrid solid bio-polymer electrolytes for applications in EDLC. Int J Hydrogen Energy 45:8727–8741. https://doi.org/10.1016/j.ijhydene.2020.01.038

    Article  CAS  Google Scholar 

  6. Singh R, Singh PK, Singh V, Bhattacharya B (2019) Quantitative analysis of ion transport mechanism in biopolymer electrolyte. Opt Laser Technol 113:303–309. https://doi.org/10.1016/j.optlastec.2018.12.036

    Article  ADS  CAS  Google Scholar 

  7. Saadiah MA, Nagao Y, Samsudin AS (2021) Enhancement on protonation (H+) with incorporation of flexible ethylene carbonate in CMC–PVA–30 wt % NH4NO3 film. Int J Hydrogen Energy 46:17231–17245. https://doi.org/10.1016/j.ijhydene.2021.02.187

    Article  CAS  Google Scholar 

  8. Zhou K, Zhang M, Zhang X, Wang T, Wang H, Wang Z et al (2023) A cellulose reinforced polymer composite electrolyte for the wide-temperature-range solid lithium batteries. Chem Eng J 464:142537. https://doi.org/10.1016/j.cej.2023.142537

    Article  CAS  Google Scholar 

  9. Isa MIN, Sohaimy MIH, Ahmad NH (2021) Carboxymethyl cellulose plasticized polymer application as bio-material in solid-state hydrogen ionic cell. Int J Hydrogen Energy 46:8030–8039. https://doi.org/10.1016/j.ijhydene.2020.11.274

    Article  CAS  Google Scholar 

  10. Nadirah BN, Ong CC, Saheed MSM, Yusof YM, Shukur MF (2020) Structural and conductivity studies of polyacrylonitrile/methylcellulose blend based electrolytes embedded with lithium iodide. Int J Hydrogen Energy 45:19590–19600. https://doi.org/10.1016/j.ijhydene.2020.05.016

    Article  CAS  Google Scholar 

  11. Ben youcef H, Henkensmeier D, Balog S, Scherer GG, Gubler L (2020) Copolymer synergistic coupling for chemical stability and improved gas barrier properties of a polymer electrolyte membrane for fuel cell applications. Int J Hydrogen Energy 45:7059–7068. https://doi.org/10.1016/j.ijhydene.2019.12.208

    Article  CAS  Google Scholar 

  12. Majumdar S, Sen P, Ray R (2019) Ionic interactions and transport properties in chitosan-starch based blend solid biopolymer electrolytes. Mater Today Proc 18:4913–4920. https://doi.org/10.1016/j.matpr.2019.07.483

    Article  CAS  Google Scholar 

  13. Liang YF, Xia Y, Zhang SZ, Wang XL, Xia XH, Gu CD et al (2019) A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride-hexafluoropropylene) -poly(propylene carbonate) for solid-state lithium ion batteries. Electrochim Acta 296:1064–1069. https://doi.org/10.1016/j.electacta.2018.11.182

    Article  CAS  Google Scholar 

  14. Thayumanasundaram S, Rangasamy VS, Seo JW, Locquet JP (2017) Electrochemical performance of polymer electrolytes based on poly(vinyl alcohol)/Poly(acrylic acid) blend and pyrrolidinium ionic liquid for lithium rechargeable batteries. Electrochim Acta 240:371–378. https://doi.org/10.1016/j.electacta.2017.04.107

    Article  CAS  Google Scholar 

  15. Abdulwahid RT, Aziz SB, Kadir MFZ (2023) Replacing synthetic polymer electrolytes in energy storage with flexible biodegradable alternatives : sustainable green biopolymer blend electrolyte for supercapacitor device. Mater Today Sustain 23:100472. https://doi.org/10.1016/j.mtsust.2023.100472

    Article  Google Scholar 

  16. Abdulwahid RT, Aziz SB, Kadir MFZ (2023) Environmentally friendly plasticized electrolyte based on chitosan (CS): Potato starch (PS) polymers for EDLC application: steps toward the greener energy storage devices derived from biopolymers. J Energy Storage 67:107636. https://doi.org/10.1016/j.est.2023.107636

    Article  Google Scholar 

  17. Aziz SB, Abidin ZHZ, Arof AK (2010) Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosansilver triflate electrolyte membrane. Express Polym Lett 4:300–310. https://doi.org/10.3144/expresspolymlett.2010.38

    Article  CAS  Google Scholar 

  18. Aziz SB, Abdullah OG, Rasheed MA, Ahmed HM (2017) Effect of high salt concentration (HSC) on structural, morphological, and electrical characteristics of chitosan based solid polymer electrolytes. Polym (Basel) 9:187. https://doi.org/10.3390/polym9060187

    Article  CAS  Google Scholar 

  19. Yassin AY (2021) Impedance, structural and thermal analyses of polyvinyl alcohol/polyvinyl pyrrolidone blend incorporated with Li + ions for lithium-ion batteries. J Mater Res Technol 15:754–767. https://doi.org/10.1016/j.jmrt.2021.08.063

    Article  CAS  Google Scholar 

  20. Salem AM, Mohamed AR, Yassin AY (2023) The effect of low concentrations of polypyrrole on the structural, thermal, and dielectric characteristics of CMC/PPy blends. J Mater Sci Mater Electron 34:1–13. https://doi.org/10.1007/s10854-023-10938-1

    Article  CAS  Google Scholar 

  21. Yassin AY (2023) Synthesized polymeric nanocomposites with enhanced optical and electrical properties based on gold nanoparticles for optoelectronic applications. J Mater Sci Mater Electron 34:1–18. https://doi.org/10.1007/s10854-022-09402-3

    Article  CAS  Google Scholar 

  22. Damoom MM, Saeed A, Alshammari EM, Alhawsawi AM, Yassin AY, Abdulwahed JAM et al (2023) The role of TiO2 nanoparticles in enhancing the structural, optical, and electrical properties of PVA/PVP/CMC ternary polymer blend: nanocomposites for capacitive energy storage. J Sol-Gel Sci Technol 108:742–755. https://doi.org/10.1007/s10971-023-06223-6

    Article  CAS  Google Scholar 

  23. Al-Muntaser AA, Pashameah RA, Saeed A, Alwafi R, Alzahrani E, AlSubhi SA et al (2023) Boosting the optical, structural, electrical, and dielectric properties of polystyrene using a hybrid GNP/Cu nanofiller: novel nanocomposites for energy storage applications. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-023-10104-7

    Article  Google Scholar 

  24. Gupta S, Varshney PK (2017) Effect of plasticizer concentration on structural and electrical properties of hydroxyethyl cellulose (HEC)-based polymer electrolyte. Ionics (Kiel) 23:1613–1617. https://doi.org/10.1007/s11581-017-2116-8

    Article  CAS  Google Scholar 

  25. Kumar R, Sharma S, Pathak D, Dhiman N, Arora N (2017) Ionic conductivity, FTIR and thermal studies of nano-composite plasticized proton conducting polymer electrolytes. Solid State Ionics 305:57–62. https://doi.org/10.1016/j.ssi.2017.04.020

    Article  CAS  Google Scholar 

  26. Shin JH, Jung SS, Kim KW, Ahn HJ, Ahn JH (2002) Preparation and characterization of plasticized polymer electrolytes based on the PVdF-HFP copolymer for lithium/sulfur battery. J Mater Sci Mater Electron 13:727–733. https://doi.org/10.1023/A:1021521207247

    Article  CAS  Google Scholar 

  27. Richardson PM, Voice AM, Ward IM (2014) Two distinct lithium diffusive species for polymer gel electrolytes containing LiBF4, propylene carbonate (PC) and PVDF. Int J Hydrogen Energy 39:2904–2908. https://doi.org/10.1016/j.ijhydene.2013.04.102

    Article  CAS  Google Scholar 

  28. Woo HJ, Majid SR, Arof AK (2013) Effect of ethylene carbonate on proton conducting polymer electrolyte based on poly(ε-caprolactone) (PCL). Solid State Ionics 252:102–108. https://doi.org/10.1016/j.ssi.2013.07.005

    Article  CAS  Google Scholar 

  29. Chai MN, Isa MIN (2016) Novel Proton Conducting Solid Bio-polymer Electrolytes based on Carboxymethyl Cellulose Doped with oleic acid and plasticized with glycerol. Sci Rep 6:27328. https://doi.org/10.1038/srep27328

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yusof YM, Kadir MFZ (2016) Electrochemical characterizations and the effect of glycerol in biopolymer electrolytes based on methylcellulose-potato starch blend. Mol Cryst Liq Cryst 627:220–233. https://doi.org/10.1080/15421406.2015.1137115

    Article  ADS  CAS  Google Scholar 

  31. Shukur MF, Ithnin R, Illias HA, Kadir MFZ (2013) Proton conducting polymer electrolyte based on plasticized chitosan-PEO blend and application in electrochemical devices. Opt Mater (Amst) 35:1834–1841. https://doi.org/10.1016/j.optmat.2013.03.004

    Article  ADS  CAS  Google Scholar 

  32. Dragunski DC, Pawlicka A (2002) Starch based solid polymeric electrolytes. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 374:561–568. https://doi.org/10.1080/10587250210443

    Article  ADS  CAS  Google Scholar 

  33. Bandara TMWJ, Dissanayake MAKL, Albinsson I, Mellander BE (2011) Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N + I- using electrical and dielectric measurements. Solid State Ionics 189:63–68. https://doi.org/10.1016/j.ssi.2011.03.004

    Article  CAS  Google Scholar 

  34. Rice MJ, Roth WL (1972) Ionic transport in super ionic conductors: a theoretical model. J Solid State Chem 4:294–310. https://doi.org/10.1016/0022-4596(72)90121-1

    Article  ADS  CAS  Google Scholar 

  35. Aziz SB, Karim WO, Brza MA, Abdulwahid RT, Saeed SR, Al-Zangana S et al (2019) Ion transport study in CS: POZ based polymer membrane electrolytes using Trukhan model. Int J Mol Sci. https://doi.org/10.3390/ijms20215265

    Article  PubMed  PubMed Central  Google Scholar 

  36. Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867. https://doi.org/10.1039/c3cp53830c

    Article  CAS  PubMed  Google Scholar 

  37. Abdulwahid RT, Aziz SB, Kadir MFZ (2022) Design of proton conducting solid biopolymer blend electrolytes based on chitosan-potato starch biopolymers : deep approaches to structural and ion relaxation dynamics of H + ion. J Appl Polym Sci 139:e52892. https://doi.org/10.1002/app.52892

    Article  CAS  Google Scholar 

  38. Shukur MF, Ithnin R, Kadir MFZ (2016) Ionic conductivity and dielectric properties of potato starch-magnesium acetate biopolymer electrolytes: the effect of glycerol and 1-butyl-3-methylimidazolium chloride. Ionics (Kiel) 22:1113–1123. https://doi.org/10.1007/s11581-015-1627-4

    Article  CAS  Google Scholar 

  39. Ibrahim S, Mohd Yasin SM, Nee NM, Ahmad R, Johan MR (2012) Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes. Solid State Commun 152:426–434. https://doi.org/10.1016/j.ssc.2011.11.037

    Article  ADS  CAS  Google Scholar 

  40. Liew CW, Ramesh S, Arof AK (2016) Enhanced capacitance of EDLCs (electrical double layer capacitors) based on ionic liquid-added polymer electrolytes. Energy 109:546–556. https://doi.org/10.1016/j.energy.2016.05.019

    Article  CAS  Google Scholar 

  41. Mohit, Hashmi SA (2023) Biodegradable poly-ε-caprolactone based porous polymer electrolytes for high performance supercapacitors with carbon electrodes. J Power Sources 557:232548. https://doi.org/10.1016/j.jpowsour.2022.232548

    Article  CAS  Google Scholar 

  42. Pistorius AMA, DeGrip WJ (2004) Deconvolution as a tool to remove fringes from an FT-IR spectrum. Vib Spectrosc 36:89–95. https://doi.org/10.1016/j.vibspec.2004.04.001

    Article  CAS  Google Scholar 

  43. Xi J, Bai Y, Qiu X, Zhu W, Chen L, Tang X (2005) Conductivities and transport properties of microporous molecular sieves doped composite polymer electrolyte used for lithium polymer battery. New J Chem 29:1454–1460. https://doi.org/10.1039/b505332c

    Article  CAS  Google Scholar 

  44. Abarna S, Hirankumar G (2017) Electrical, dielectric and electrochemical studies on new Li ion conducting solid polymer electrolytes based on polyethylene glycol p-tert-octylphenyl ether. Polym Sci - Ser A 59:660–668. https://doi.org/10.1134/S0965545X17050017

    Article  CAS  Google Scholar 

  45. Ramlli MA, Bashirah NAA, Isa MIN (2018) Ionic conductivity and structural analysis of 2-hyroxyethyl cellulose doped with glycolic acid solid Biopolymer Electrolytes for Solid Proton Battery. IOP Conf Ser Mater Sci Eng 440:012038. https://doi.org/10.1088/1757-899X/440/1/012038

    Article  Google Scholar 

  46. Brza MA, Aziz SB, Anuar H, Ali F (2020) Structural, ion transport parameter and electrochemical properties of plasticized polymer composite electrolyte based on PVA: a novel approach to fabricate high performance EDLC devices. Polym Test 91:106813. https://doi.org/10.1016/j.polymertesting.2020.106813

    Article  CAS  Google Scholar 

  47. Aniskari NAB, Mohd Isa MIN, Bin (2017) The effect of ionic charge carriers in 2-hydroxyethyl cellulose solid biopolymer electrolytes doped glycolic acid via FTIR-deconvolution technique. J Sustain Sci Manag 2017:71–79

    Google Scholar 

  48. Mahato DK, Dutta A, Sinha TP (2010) Impedance spectroscopy analysis of double perovskite Ho 2NiTiO6. J Mater Sci 45:6757–6762. https://doi.org/10.1007/s10853-010-4771-2

    Article  ADS  CAS  Google Scholar 

  49. Rawat P, Saroj AL (2023) Effect of ionic liquid on plasticized CS-PVP-NaI based bio-polymer blend electrolytes: structural, thermal, dielectric and ion transport properties study. Mater Sci Eng B Solid-State Mater Adv Technol 288:116215. https://doi.org/10.1016/j.mseb.2022.116215

    Article  CAS  Google Scholar 

  50. Hamsan MH, Shukur MF, Kadir MFZ (2017) NH4NO3 as charge carrier contributor in glycerolized potato starch-methyl cellulose blend-based polymer electrolyte and the application in electrochemical double-layer capacitor. Ionics (Kiel) 23:3429–3453. https://doi.org/10.1007/s11581-017-2155-1

    Article  CAS  Google Scholar 

  51. Abdullah AM, Aziz SB, Brza MA, Saeed SR, Al-Asbahi BA, Sadiq NM et al (2022) Glycerol as an efficient plasticizer to increase the DC conductivity and improve the ion transport parameters in biopolymer based electrolytes: XRD, FTIR and EIS studies. Arab J Chem 15:103791. https://doi.org/10.1016/j.arabjc.2022.103791

    Article  CAS  Google Scholar 

  52. Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM (2018) A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mater Devices 3:1–17. https://doi.org/10.1016/j.jsamd.2018.01.002

    Article  Google Scholar 

  53. Aziz SB, Abdulwahid RT, Kadir MFZ, Ghareeb HO, Ahamad T, Alshehri SM (2021) Design of non-faradaic EDLC from plasticized MC based Polymer electrolyte with an energy density close to lead-acid batteries. J Ind Eng Chem 105:414–426. https://doi.org/10.1016/j.jiec.2021.09.042

    Article  CAS  Google Scholar 

  54. Abdullah AM, Aziz SB, Saeed SR (2021) Structural and electrical properties of polyvinyl alcohol (PVA):Methyl cellulose (MC) based solid polymer blend electrolytes inserted with sodium iodide (NaI) salt. Arab J Chem 14:103388. https://doi.org/10.1016/j.arabjc.2021.103388

    Article  CAS  Google Scholar 

  55. Teoh KH, Lim CS, Ramesh S (2014) Lithium ion conduction in corn starch based solid polymer electrolytes. Measurement 48:87–95. https://doi.org/10.1016/j.measurement.2013.10.040

    Article  ADS  Google Scholar 

  56. Liew C, Ramesh S (2015) Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes. Carbohydr Polym 124:222–228. https://doi.org/10.1016/j.carbpol.2015.02.024

    Article  CAS  PubMed  Google Scholar 

  57. Teoh KH, Lim CS, Liew CW, Ramesh S (2016) Preparation and performance analysis of barium titanate incorporated in corn starch-based polymer electrolytes for electric double layer capacitor application. J Appl Polym Sci 133:1–8. https://doi.org/10.1002/app.43275

    Article  CAS  Google Scholar 

  58. Pal P, Ghosh A (2016) Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based Polymer electrolytes plasticized with ethylene carbonate. J Appl Phys 120:045108. https://doi.org/10.1063/1.4959985

    Article  ADS  CAS  Google Scholar 

  59. Shukla N, Thakur AK, Shukla A, Marx DT (2014) Ion conduction mechanism in solid polymer electrolyte: an applicability of almond-west formalism. Int J Electrochem Sci 9:7644–7659

    Article  Google Scholar 

  60. Choudhary S, Sengwa RJ (2015) Structural and dielectric studies of amorphous and semicrystalline polymers blend-based nanocomposite electrolytes. J Appl Polym Sci 132:23–29. https://doi.org/10.1002/app.41311

    Article  CAS  Google Scholar 

  61. Arya A, Sharma S, Sharma AL, Kumar D, Sadiq M (2016) Structural and dielectric Behaviour of Blend Polymer Electrolyte based on PEO-PAN + LiPF6. Asian J Eng Appl Technol 5:4–7. https://doi.org/10.51983/ajeat-2016.5.1.774

    Article  Google Scholar 

  62. Bhargav PB, Mohan VM, Sharma AK, Rao VVRN (2009) Investigations on electrical properties of (PVA:NaF) Polymer electrolytes for electrochemical cell applications. Curr Appl Phys 9:165–171. https://doi.org/10.1016/j.cap.2008.01.006

    Article  ADS  Google Scholar 

  63. Ahad N, Saion E, Gharibshahi E, Structural T (2012) Electrical properties of PVA-Sodium Salicylate Solid Composite Polymer Electrolyte. J Nanomater 2012:857569. https://doi.org/10.1155/2012/857569

    Article  CAS  Google Scholar 

  64. Yu X, Yi B, Liu F, Wang X (2008) Prediction of the dielectric dissipation factor tan δ of polymers with an ANN model based on the DFT calculation. React Funct Polym 68:1557–1562. https://doi.org/10.1016/j.reactfunctpolym.2008.08.009

    Article  CAS  Google Scholar 

  65. Jiang H, Hong L, Venkatasubramanian N, Grant JT, Eyink K, Wiacek K et al (2007) The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films. Thin Solid Films 515:3513–3520. https://doi.org/10.1016/j.tsf.2006.10.126

    Article  ADS  CAS  Google Scholar 

  66. Baskaran R, Selvasekarapandian S, Hirankumar G, Bhuvaneswari MS (2004) Dielectric and conductivity relaxations in PVAc based Polymer electrolytes. Ionics (Kiel) 10:129–134. https://doi.org/10.1007/BF02410321

    Article  CAS  Google Scholar 

  67. Idris NH, Senin HB, Arof AK (2007) Dielectric spectra of LiTFSI-doped chitosan/PEO blends. Ionics (Kiel) 13:213–217. https://doi.org/10.1007/s11581-007-0093-z

    Article  CAS  Google Scholar 

  68. Smaoui H, Mir LEL, Guermazi H, Agnel S, Toureille A (2009) Study of dielectric relaxations in zinc oxide-epoxy resin nanocomposites. J Alloys Compd 477:316–321. https://doi.org/10.1016/j.jallcom.2008.10.084

    Article  CAS  Google Scholar 

  69. Aziz SB (2016) Occurrence of electrical percolation threshold and observation of phase transition in chitosan (1 – x) :AgI x (0.05 ≤ x ≤ 0.2)-based ion-conducting solid polymer composites. Appl Phys a Mater Sci Process 122:706. https://doi.org/10.1007/s00339-016-0235-0

    Article  ADS  CAS  Google Scholar 

  70. Aziz SB, Abidin ZHZ (2015) Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: Electrical and dielectric analysis. J Appl Polym Sci 132:1–10. https://doi.org/10.1002/app.41774

    Article  CAS  Google Scholar 

  71. Belattar J, Graça MPF, Costa LC, Achour ME, Brosseau C (2010) Electric modulus-based analysis of the dielectric relaxation in carbon black loaded polymer composites. J Appl Phys. https://doi.org/10.1063/1.3452366

    Article  Google Scholar 

  72. Pradhan DK, Choudhary RNP, Samantaray BK (2008) Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int J Electrochem Sci 3:597–608

    Article  CAS  Google Scholar 

  73. Sengwa RJ, Choudhary S, Sankhla S (2008) Low frequency dielectric relaxation processes and ionic conductivity of montmorillonite clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone)-ethylene glycol blends. Express Polym Lett 2:800–809. https://doi.org/10.3144/expresspolymlett.2008.93

    Article  CAS  Google Scholar 

  74. Aziz SB, Abdullah OG, Rasheed MA (2017) Structural and electrical characteristics of PVA:NaTf based solid polymer electrolytes: role of lattice energy of salts on electrical DC conductivity. J Mater Sci Mater Electron 28:12873–12884. https://doi.org/10.1007/s10854-017-7117-x

    Article  CAS  Google Scholar 

  75. Marzantowicz M, Dygas JR, Krok F, Florja??czyk Z, Zygad??o-Monikowska E (2007) Conductivity and dielectric properties of polymer electrolytes PEO:LiN(CF3SO2)2 near glass transition. J Non Cryst Solids 353:4467–4473. https://doi.org/10.1016/j.jnoncrysol.2007.04.046

    Article  ADS  CAS  Google Scholar 

  76. Mohomed K, Gerasimov TG, Moussy F, Harmon JP (2005) A broad spectrum analysis of the dielectric properties of poly(2-hydroxyethyl methacrylate). Polym (Guildf) 46:3847–3855. https://doi.org/10.1016/j.polymer.2005.02.100

    Article  CAS  Google Scholar 

  77. Basha SS, Rao MR (2019) Spectroscopic and Electrochemical properties of (1-x)[PVA/PVP]:x [MgCl2{6H2O}] Blend Polymer Electrolyte films. Int J Polym Sci 75:2926167

    Google Scholar 

  78. Rama Mohan K, Achari VBS, Rao VVRN, Sharma AK (2011) Electrical and optical properties of (PEMA/PVC) polymer blend electrolyte doped with NaClO4. Polym Test 30:881–886. https://doi.org/10.1016/j.polymertesting.2011.08.010

    Article  CAS  Google Scholar 

  79. Tang J, Muchakayala R, Song S, Wang M, Kumar KN (2016) Effect of EMIMBF4 ionic liquid addition on the structure and ionic conductivity of LiBF4-complexed PVdF-HFP polymer electrolyte films. Polym Test 50:247–254. https://doi.org/10.1016/j.polymertesting.2016.01.023

    Article  CAS  Google Scholar 

  80. Polu AR, Rhee HW, Kim DK (2015) New solid polymer electrolytes (PEO20–LiTDI–SN) for lithium batteries: structural, thermal and ionic conductivity studies. J Mater Sci Mater Electron 26:8548–8554. https://doi.org/10.1007/s10854-015-3527-9

    Article  CAS  Google Scholar 

  81. Dhatarwal P, Choudhary S, Sengwa RJ (2018) Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO–PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium ion batteries. Compos Commun 10:11–17. https://doi.org/10.1016/j.coco.2018.05.004

    Article  Google Scholar 

  82. Rudhziah S, Rani MSA, Ahmad A, Mohamed NS, Kaddami H (2015) Potential of blend of kappa-carrageenan and cellulose derivatives for green polymer electrolyte application. Ind Crops Prod 72:133–141. https://doi.org/10.1016/j.indcrop.2014.12.051

    Article  CAS  Google Scholar 

  83. Jäckel N, Rodner M, Schreiber A, Jeongwook J, Zeiger M, Aslan M et al (2016) Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation. J Power Sources 326:660–671. https://doi.org/10.1016/j.jpowsour.2016.03.015

    Article  CAS  Google Scholar 

  84. He X, Lei J, Geng Y, Zhang X, Wu M, Zheng M (2009) Preparation of microporous activated carbon and its electrochemical performance for electric double layer capacitor. J Phys Chem Solids 70:738–744. https://doi.org/10.1016/j.jpcs.2009.03.001

    Article  ADS  CAS  Google Scholar 

  85. Fang B, Binder L (2006) A novel carbon electrode material for highly improved EDLC performance. J Phys Chem B 110:7877–7882. https://doi.org/10.1021/jp060110d

    Article  CAS  PubMed  Google Scholar 

  86. Hamsan MH, Shukur MF, Aziz SB, Yusof YM, Kadir MFZ (2020) Influence of NH4Br as an ionic source on the structural/electrical properties of dextran-based biopolymer electrolytes and EDLC application. Bull Mater Sci. https://doi.org/10.1007/s12034-019-2008-9

    Article  Google Scholar 

  87. Teoh KH, Lim CS, Liew CW, Ramesh S, Ramesh S (2015) Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler. Ionics (Kiel) 21:2061–2068. https://doi.org/10.1007/s11581-014-1359-x

    Article  CAS  Google Scholar 

  88. Asnawi ASFM, Hamsan MH, Kadir FZ, Aziz SB, Matmin J (2021) Impregnation of [Emim]Br ionic liquid as plasticizer in biopolymer electrolytes for EDLC application. Electrochim Acta 375:137923. https://doi.org/10.1016/j.electacta.2021.137923

    Article  CAS  Google Scholar 

  89. Aziz SB, Hamsan MH, Brza MA, Kadir MFZ, Muzakir SK, Abdulwahid RT (2020) Effect of glycerol on EDLC characteristics of chitosan:methylcellulose polymer blend electrolytes. J Mater Res Technol 9:8355–8366. https://doi.org/10.1016/j.jmrt.2020.05.114

    Article  CAS  Google Scholar 

  90. Lim CS, Teoh KH, Liew CW, Ramesh S (2014) Capacitive behavior studies on electrical double layer capacitor using poly (vinyl alcohol)-lithium perchlorate based Polymer electrolyte incorporated with TiO2. Mater Chem Phys 143:661–667. https://doi.org/10.1016/j.matchemphys.2013.09.051

    Article  CAS  Google Scholar 

  91. Liew CW, Ramesh S, Arof AK (2015) Characterization of ionic liquid added poly(vinyl alcohol)-based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors. Int J Hydrogen Energy 40:852–862. https://doi.org/10.1016/j.ijhydene.2014.09.160

    Article  CAS  Google Scholar 

  92. Kadir MFZ, Arof AK (2013) Application of PVA-chitosan blend polymer electrolyte membrane in electrical double layer capacitor. Mater Res Innov 15:S217–S220. https://doi.org/10.1179/143307511X13031890749299

    Article  Google Scholar 

  93. Bashir S, Omar FS, Hina M, Numan A, Iqbal J, Ramesh S et al (2020) Synthesis and characterization of hybrid poly (N, N-dimethylacrylamide) composite hydrogel electrolytes and their performance in supercapacitor. Electrochim Acta 332:135438. https://doi.org/10.1016/j.electacta.2019.135438

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge all the support for this study from the Ministry of Higher Education and Scientific Research-Kurdish National Research Council (KNRC), Kurdistan Regional Government. The support from the University of Sulaimani, University of Humburg, University of Charmo, University of Cihan Sulaimaniya, University of Raparin and University of Malaya are greatly acknowledged. The authors express their gratitude to the Researchers Supporting Project Number (RSP2024R348), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SB; Data curation, RT; Formal analysis, DM, SB and RT; Funding acquisition, BA; Investigation, RT, SA and PS; Methodology, SA, HJ, RT and AA; Project administration, SB and MF; Resources, BA and HJ ; Supervision, SB and MK; Validation, DM, SA, PS, WO, BA, AA and HJ ; Visualization, DM and RT; Writing—original draft, DM and SB; Writing—review & editing, RT, SA, WO, PS, HJ, and A

Corresponding authors

Correspondence to Rebar T. Abdulwahid or Shujahadeen B. Aziz.

Ethics declarations

Conflict of interest

The authors assert that they have no conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, D.M., Abdulwahid, R.T., Hassan, S.A. et al. Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03198-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03198-5

Keywords

Navigation