Skip to main content
Log in

Recent Progress in Enhanced Optical, Mechanical, Thermal Properties, and Antibacterial Activity of the Chitosan/Polyvinylalcohol/Co3O4 Nanocomposites for Optoelectronics and Biological Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present study explores the influence of Cobalt oxide nanoparticles(Co3O4 NPs) on the physicochemical characteristics of Poly(vinylalcohol)/ Chitosan (PVA/Cs) blend. Using a variety of techniques, the pure blend and the nanocomposites’ composition, structure, optical, thermal, and mechanical properties, and antibacterial activity were characterized. The Co3O4 NPs were produced by precipitation method utilizing cobalt salt as the raw material. The crystalline nature of the nanoparticles and semi-crystalline behavior of the PVA/Cs are demonstrated by the XRD data. Adding nanoparticles to the pure blend reduced the intensity of the semi-crystalline. The rise in absorption intensity observed in UV-visible spectra upon the incorporation of Co3O4 NPs into the PVA/Cs blend indicates an improved dispersion of the nanoparticles within the blend. When Co3O4 NPs are added, the energy band-gap Egdir and Egind of PVA/Cs–Co3O4 samples greatly decrease. According to TGA data, the thermal stability of nanocomposites was significantly higher than that of the PVA/Cs blend, and it rose as the concentration of nanoparticles increased. When compared to neat PVA/Cs film, mechanical property investigation of PVA/Cs–Co3O4 nanocomposites films revealed enhanced features. The effectiveness of the PVA/Cs–Co3O4 nanocomposite films in inhibiting the growth of microorganisms was assessed by evaluating their antimicrobial activity (ANMAC) against a range of bacteria and fungi. The inclusion of Co3O4 NPs led to an increase in activity against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria as well as fungi Candida albicans and Aspergillus niger (C. albicans and A. niger). The addition of Co3O4 NPs to the PVA/Cs blend effectively improved the material’s optical, thermal, mechanical, and antibacterial properties. This remarkable improvement stems from the Co3O4 NPs, which were introduced into the PVA/Cs blend in different amounts, leading to the development of novel nanocomposites. The outstanding properties of Co3O4/PVA/Cs nanocomposite films suggest their potential for applications in optoelectronics and food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Shubha A, Manohara SR, Siddlingeshwar B, Daima HK, Singh M, Revaprasadu N (2022) Ternary poly(2-ethyl-2-oxazoline)-polyvinylpyrrolidone-graphene nanocomposites: Thermal, electrical, dielectric, mechanical, and antibacterial profiling. Diam Relat Mater 125:109001. https://doi.org/10.1016/J.DIAMOND.2022.109001

    Article  ADS  CAS  Google Scholar 

  2. Albalawi H, Alharbi EM, Al-Sulami AI, Al‐Qahtani N, Farea MO, Rajeh A (2023) Synthesis and characterization of sodium alginate/polyvinyl alcohol/zinc oxide/iron oxide nanocomposites for electrochemical applications. Polym Compos 44:1762–1771. https://doi.org/10.1002/pc.27203

    Article  CAS  Google Scholar 

  3. Alzahrani HS, Al-Sulami AI, Alsulami QA, Rajeh A (2022) A systematic study of structural, conductivity, linear, and nonlinear optical properties of PEO/PVA-MWCNTs/ZnO nanocomposites films for optoelectronic applications. Opt Mater (Amst) 133:112900. https://doi.org/10.1016/J.OPTMAT.2022.112900

    Article  CAS  Google Scholar 

  4. Govindasamy GA, Mydin RBSMN, N.F.W W, Sreekantan S (2022) Novel dual-ionic ZnO/CuO embedded in porous chitosan biopolymer for wound dressing application: Physicochemical, bactericidal, cytocompatibility and wound healing profiles. Mater Today Commun 33:104545. https://doi.org/10.1016/J.MTCOMM.2022.104545

    Article  CAS  Google Scholar 

  5. Abutalib MM, Rajeh A (2020) Structural, thermal, optical and conductivity studies of Co/ZnO nanoparticles doped CMC Polymer for solid state battery applications. Polym Test 91:106803. https://doi.org/10.1016/J.POLYMERTESTING.2020.106803

    Article  CAS  Google Scholar 

  6. Bharati DC, Rawat P, Saroj AL (2021) Structural, thermal, and ion dynamics studies of PVA-CS-NaI-based biopolymer electrolyte films. J Solid State Electrochem 25:1727–1741. https://doi.org/10.1007/s10008-021-04946-6

    Article  CAS  Google Scholar 

  7. Govindasamy GA, Mydin RBSMN, Gadaime NKR, Sreekantan S (2023) Phytochemicals, Biodegradation, Cytocompatibility and Wound Healing profiles of Chitosan Film embedded Green Synthesized Antibacterial ZnO/CuO Nanocomposite. J Polym Environ 31:4393–4409. https://doi.org/10.1007/s10924-023-02902-1

    Article  CAS  Google Scholar 

  8. Saroj AL, Krishnamoorthi S, Singh RK (2017) Structural, thermal and electrical transport behaviour of polymer electrolytes based on PVA and imidazolium based ionic liquid. J Non Cryst Solids 473:87–95. https://doi.org/10.1016/J.JNONCRYSOL.2017.07.035

    Article  ADS  CAS  Google Scholar 

  9. Varshney PK, Gupta S (2011) Natural polymer-based electrolytes for electrochemical devices: a review. Ionics (Kiel) 17:479–483. https://doi.org/10.1007/s11581-011-0563-1

    Article  CAS  Google Scholar 

  10. Agrawal P, Strijkers GJ, Nicolay K (2010) Chitosan-based systems for molecular imaging. Adv Drug Deliv Rev 62:42–58. https://doi.org/10.1016/J.ADDR.2009.09.007

    Article  PubMed  CAS  Google Scholar 

  11. Leones R, Sabadini RC, Esperança JMSS, Pawlicka A, Silva MM (2017) Effect of storage time on the ionic conductivity of chitosan-solid polymer electrolytes incorporating cyano-based ionic liquids. Electrochim Acta 232:22–29. https://doi.org/10.1016/J.ELECTACTA.2017.02.053

    Article  CAS  Google Scholar 

  12. Saroj AL, Singh RK (2012) Thermal, dielectric and conductivity studies on PVA/Ionic liquid [EMIM][EtSO4] based Polymer electrolytes. J Phys Chem Solids 73:162–168. https://doi.org/10.1016/J.JPCS.2011.11.012

    Article  ADS  CAS  Google Scholar 

  13. Mobarak NN, Ahmad A, Abdullah MP, Ramli N, Rahman MYA (2013) Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte. Electrochim Acta 92:161–167. https://doi.org/10.1016/J.ELECTACTA.2012.12.126

    Article  CAS  Google Scholar 

  14. Hezma AM, Rajeh A, Mannaa MA (2019) An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite, colloids surfaces a physicochem. Eng Asp 581:123821. https://doi.org/10.1016/J.COLSURFA.2019.123821

    Article  CAS  Google Scholar 

  15. Guo S, Dong S, Wang E (2010) Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on Graphene Nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4:547–555. https://doi.org/10.1021/nn9014483

    Article  PubMed  CAS  Google Scholar 

  16. Lakshmanan A, Surendran P, Sakthy Priya S, Balakrishnan K, Geetha P, Rameshkumar P, Hegde TA, Vinitha G, Kannan K (2020) Investigations on structural, optical, dielectric, electronic polarizability, Z-scan and antibacterial properties of Ni/Zn/Fe2O4 nanoparticles fabricated by microwave-assisted combustion method. J Photochem Photobiol A Chem 402:112794. https://doi.org/10.1016/J.JPHOTOCHEM.2020.112794

    Article  CAS  Google Scholar 

  17. Nachimuthu S, Thangavel S, Kannan K, Selvakumar V, Muthusamy K, Raza Siddiqui M, Mohammad Wabaidur S, Parvathiraja C (2022) Lawsonia inermis mediated synthesis of ZnO/Fe2O3 nanorods for photocatalysis – biological treatment for the enhanced effluent treatment, antibacterial and antioxidant activities. Chem Phys Lett 804:139907. https://doi.org/10.1016/J.CPLETT.2022.139907

    Article  CAS  Google Scholar 

  18. Li Y, Zhao J, Dan Y, Ma D, Zhao Y, Hou S, Lin H, Wang Z (2011) Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies. Chem Eng J 166:428–434. https://doi.org/10.1016/J.CEJ.2010.10.080

    Article  CAS  Google Scholar 

  19. Warang T, Patel N, Santini A, Bazzanella N, Kale A, Miotello A (2012) Pulsed laser deposition of Co3O4 nanoparticles assembled coating: role of substrate temperature to tailor disordered to crystalline phase and related photocatalytic activity in degradation of methylene blue. Appl Catal A Gen 423–424. https://doi.org/10.1016/J.APCATA.2012.02.037

  20. Bhushan M, Kumar Y, Periyasamy L, Viswanath AK (2018) Antibacterial applications of α-Fe2O3/Co3O4 nanocomposites and study of their structural, optical, magnetic and cytotoxic characteristics. Appl Nanosci 8:137–153. https://doi.org/10.1007/s13204-018-0656-5

    Article  ADS  CAS  Google Scholar 

  21. Gupta V, Kant V, Sharma AK, Sharma M (2022) Comparative evaluation of antibacterial potentials of nano cobalt oxide with standard antimicrobials. J Indian Chem Soc 99:100533. https://doi.org/10.1016/J.JICS.2022.100533

    Article  CAS  Google Scholar 

  22. Abdel-Wareth MTA, El-Hagrassi AM, Abdel-Aziz MS, Nasr SM, Ghareeb MA (2019) Biological activities of endozoic fungi isolated from Biomphalaria alexandrina snails maintained in different environmental conditions. Int J Environ Stud 76:780–799. https://doi.org/10.1080/00207233.2019.1620535

    Article  CAS  Google Scholar 

  23. Letsholathebe D, Thema FT, Mphale K, Mohamed HEA, Holonga KJ, Ketlhwaafetse R, Chimidza S (2021) Optical and structural stability of Co3O4 nanoparticles for photocatalytic applications, Mater. Today Proc. 36 499–503. https://doi.org/10.1016/J.MATPR.2020.05.205

  24. Lakra R, Kumar R, Nath Thatoi D, Kumar Sahoo P (2021) Synthesis and characterization of cobalt oxide (Co3O4) nanoparticles. Mater Today Proc 41:269–271. https://doi.org/10.1016/J.MATPR.2020.09.099

    Article  CAS  Google Scholar 

  25. Murugesan R, Sivakumar S, Karthik K, Anandan P, Haris M (2019) Structural, optical and magnetic behaviors of Fe/Mn-doped and co-doped CdS thin films prepared by spray pyrolysis method. Appl Phys A 125:281. https://doi.org/10.1007/s00339-019-2577-x

    Article  ADS  CAS  Google Scholar 

  26. Karthik K, Pushpa S, Madhukara Naik M, Vinuth M (2020) Influence of Sn and Mn on structural, optical and magnetic properties of spray pyrolysed CdS thin films. Mater Res Innov 24:82–86. https://doi.org/10.1080/14328917.2019.1597436

    Article  CAS  Google Scholar 

  27. Abdullah OG, Hanna RR, Salman YAK, Aziz SB (2018) Characterization of Lithium Ion-conducting blend Biopolymer Electrolyte based on CH–MC Doped with LiBF4. J Inorg Organomet Polym Mater 28:1432–1438. https://doi.org/10.1007/s10904-018-0802-2

    Article  CAS  Google Scholar 

  28. Hasegawa M, Isogai A, Onabe F, Usuda M, Atalla RH (1992) Characterization of cellulose–chitosan blend films. J Appl Polym Sci 45:1873–1879. https://doi.org/10.1002/app.1992.070451101

    Article  CAS  Google Scholar 

  29. Ebtesam M, Alharbi, Rajeh A (2022) Tailoring the structural, optical, dielectric, and electrical properties of PEO/PVA blend using graphene nanoplates for energy storage devices. J Mater Sci: Mater Electron 33(28):22196–22207

    Google Scholar 

  30. Shukur MF, Kadir MFZ (2015) Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta 158:152–165. https://doi.org/10.1016/J.ELECTACTA.2015.01.167

    Article  CAS  Google Scholar 

  31. Letsholathebe D et al (2021) Optical and structural stability of Co3O4 nanoparticles for photocatalytic applications. Materials Today: Proceedings 36 : 499–503

  32. Hoang T, Ramadass K, Loc TT, Mai TT, Giang LD, Thang VV, Tuan TM, Chinh NT (2019) Novel Drug Delivery System based on Ginsenoside Rb1 loaded to Chitosan/Alginate Nanocomposite Films. J Nanosci Nanotechnol 19:3293–3300. https://doi.org/10.1166/jnn.2019.16116

    Article  PubMed  CAS  Google Scholar 

  33. Abou El-Reash YG, Abdelghany AM, Elrazak AA (2016) Removal and separation of Cu(II) from aqueous solutions using nano-silver chitosan/polyacrylamide membranes. Int J Biol Macromol 86:789–798. https://doi.org/10.1016/j.ijbiomac.2016.01.101

    Article  PubMed  CAS  Google Scholar 

  34. Zhu J, Li Q, Che Y, Liu X, Dong C, Chen X, Wang C (2020) Effect of Na2CO3 on the microstructure and Macroscopic Properties and mechanism analysis of PVA/CMC Composite Film. Polym (Basel) 12:453. https://doi.org/10.3390/polym12020453

    Article  CAS  Google Scholar 

  35. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548. https://doi.org/10.1016/J.MSEC.2007.10.088

    Article  CAS  Google Scholar 

  36. Lewandowska K (2015) Miscibility and physical properties of chitosan and polyacrylamide blends. J Mol Liq 209:301–305. https://doi.org/10.1016/J.MOLLIQ.2015.05.049

    Article  CAS  Google Scholar 

  37. Rani P, Deshmukh K, Kadlec J, Krishna Karthik TV, Khadheer SK, Pasha (2023) Dielectric properties of graphene/nano-Fe2O3 filled poly (vinyl alcohol)/Chitosan blends. Mater Chem Phys 295:126986. https://doi.org/10.1016/J.MATCHEMPHYS.2022.126986

    Article  CAS  Google Scholar 

  38. Ali H, Tiama TM, Ismail AM (2021) New and efficient NiO/chitosan/polyvinyl alcohol nanocomposites as antibacterial and dye adsorptive films. Int J Biol Macromol 186:278–288. https://doi.org/10.1016/J.IJBIOMAC.2021.07.055

    Article  PubMed  CAS  Google Scholar 

  39. Sadiq NM, Aziz SB, Kadir MFZ, Development of Flexible Plasticized Ion Conducting Polymer Blend Electrolytes Based on Polyvinyl Alcohol (PVA) (2022) Chitosan (CS) with high Ion Transport parameters Close to Gel based electrolytes. Gels 8:153. https://doi.org/10.3390/gels8030153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Govindasamy GA, Mydin RBSMN, Sreekantan S, Harun NH (2021) Compositions and antimicrobial properties of binary ZnO–CuO nanocomposites encapsulated calcium and carbon from Calotropis gigantea targeted for skin pathogens. Sci Rep 11:99. https://doi.org/10.1038/s41598-020-79547-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Alsulami QA, Rajeh A (2023) Modification and development in the microstructure of PVA/CMC-GO/Fe3O4 nanocomposites films as an application in energy storage devices and magnetic electronics industry. Ceram Int 49:14399–14407. https://doi.org/10.1016/J.CERAMINT.2023.01.029

    Article  CAS  Google Scholar 

  42. Suvarna S, Furhan MT, Ramesan (2022) Optical and electrical properties of copper alumina nanoparticles reinforced chlorinated polyethylene composites for optoelectronic devices. J Indian Chem Soc 99:100772. https://doi.org/10.1016/J.JICS.2022.100772

    Article  CAS  Google Scholar 

  43. Ali FM, Kershi RM, Sayed MA, AbouDeif YM (2018) Evaluation of structural and optical properties of Ce3 + ions doped (PVA/PVP) composite films for new organic semiconductors. Phys B Condens Matter 538:160–166. https://doi.org/10.1016/J.PHYSB.2018.03.031

    Article  ADS  CAS  Google Scholar 

  44. Sengwa RJ, Dhatarwal P, Choudhary S (2020) A comparative study of different metal oxide nanoparticles dispersed PVDF/PEO blend matrix-based advanced multifunctional nanodielectrics for flexible electronic devices. Mater Today Commun 25:101380. https://doi.org/10.1016/J.MTCOMM.2020.101380

    Article  CAS  Google Scholar 

  45. Charan CP, Sengwa RJ, Saraswat M (2024) Synergistic effect of polymer blend compositions on the structural, thermal, optical, and broadband dielectric properties of P(VDF-HFP)/PEO/ZnO polymer nanocomposites. Chem Phys Impact 8:100410. https://doi.org/10.1016/J.CHPHI.2023.100410

    Article  Google Scholar 

  46. Morsi MA, Rajeh A, Al-Muntaser AA (2019) Reinforcement of the optical, thermal and electrical properties of PEO based on MWCNTs/Au hybrid fillers: nanodielectric materials for organoelectronic devices. Compos Part B Eng 173:106957. https://doi.org/10.1016/J.COMPOSITESB.2019.106957

    Article  CAS  Google Scholar 

  47. Alsulami QA, Rajeh A (2021) Synthesis of the SWCNTs/TiO2 nanostructure and its effect study on the thermal, optical, and conductivity properties of the CMC/PEO blend. Results Phys 28:104675. https://doi.org/10.1016/J.RINP.2021.104675

    Article  Google Scholar 

  48. Soliman TS, Zaki MF, Hessien MM, Elkalashy SI (2021) The structure and optical properties of PVA-BaTiO3 nanocomposite films. Opt Mater (Amst) 111:110648. https://doi.org/10.1016/J.OPTMAT.2020.110648

    Article  CAS  Google Scholar 

  49. Keshtov ML, Konstantinov IO, Khokhlov AR, Kuklin SA, Alekseev VG, Ostapov IE, Zou Y, Singhal R, Dahiya H, Sharma GD (2022) New wide band gap π-conjugated copolymers based on anthra[1,2-b: 4,3-b’: 6,7-c’’] trithiophene-8,12-dione for high performance non-fullerene polymer solar cells with an efficiency of 15.07%. Polym (Guildf) 251:124892. https://doi.org/10.1016/J.POLYMER.2022.124892

    Article  CAS  Google Scholar 

  50. Deori K, Ujjain SK, Sharma RK, Deka S (2013) Morphology Controlled Synthesis of Nanoporous Co 3 O 4 Nanostructures and their charge storage characteristics in Supercapacitors. ACS Appl Mater Interfaces 5:10665–10672. https://doi.org/10.1021/am4027482

    Article  PubMed  CAS  Google Scholar 

  51. Ali GAM, Fouad OA, Makhlouf SA (2013) Structural, optical and electrical properties of sol–gel prepared mesoporous Co3O4/SiO2 nanocomposites. J Alloys Compd 579:606–611. https://doi.org/10.1016/J.JALLCOM.2013.07.095

    Article  CAS  Google Scholar 

  52. Alghamdi HM, Rajeh A (2022) Synthesis of CoFe2O4/MWCNTs nanohybrid and its effect on the optical, thermal, and conductivity of PVA/CMC composite as an application in electrochemical devices. J Inorg Organomet Polym Mater 32(5):1935–1949

    Article  CAS  Google Scholar 

  53. Rajeh A et al (2023) Alteration in the Structural, Optical, Thermal, Electrical, and Dielectric properties of PMMA/PVDF blend by Incorporation of Ni/ZnO Nanohybrid for Optoelectronic and Energy Storage Devices. J Inorg Organomet Polym Mater : 1–11

  54. Alghamdi HM, Rajeh A (2023) Study of the photoluminescence, optical, thermal, and electrical parameters of the Cs/PVP blend/zinc oxide nanorods films for energy storage devices. Polym Test 124:108093. https://doi.org/10.1016/J.POLYMERTESTING.2023.108093

    Article  CAS  Google Scholar 

  55. Ramesan MT, Jayakrishnan P, Anilkumar T, Mathew G (2018) Influence of copper sulphide nanoparticles on the structural, mechanical and dielectric properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) blend nanocomposites. J Mater Sci Mater Electron 29:1992–2000. https://doi.org/10.1007/s10854-017-8110-0

    Article  CAS  Google Scholar 

  56. Thakur AK (2011) Mechanism for improvement in mechanical and thermal stability in dispersed phase polymer composites. Ionics (Kiel) 17:109–120. https://doi.org/10.1007/s11581-010-0498-y

    Article  CAS  Google Scholar 

  57. Ramesan MT, Sampreeth T (2017) Synthesis, characterization, material properties and sensor application study of polyaniline/niobium doped titanium dioxide nanocomposites. J Mater Sci Mater Electron 28:16181–16191. https://doi.org/10.1007/s10854-017-7519-9

    Article  CAS  Google Scholar 

  58. Raheel M, Yao K, Gong J, Chen X, Liu D, Lin Y, Cui D, Siddiq M, Tang T (2015) Poly(vinyl alcohol)/GO-MMT nanocomposites: Preparation, structure and properties. Chin J Polym Sci 33:329–338. https://doi.org/10.1007/s10118-015-1586-2

    Article  CAS  Google Scholar 

  59. Mathew S, Mathew J, Radhakrishnan EK (2019) Polyvinyl alcohol/silver nanocomposite films fabricated under the influence of solar radiation as effective antimicrobial food packaging material. J Polym Res 26:223. https://doi.org/10.1007/s10965-019-1888-0

    Article  CAS  Google Scholar 

  60. Akhavan A, Khoylou F, Ataeivarjovi E (2017) Preparation and characterization of gamma irradiated Starch/PVA/ZnO nanocomposite films. Radiat Phys Chem 138:49–53. https://doi.org/10.1016/J.RADPHYSCHEM.2017.02.057

    Article  ADS  CAS  Google Scholar 

  61. Mohammed H, Kumar A, Bekyarova E, Al-Hadeethi Y, Zhang X, Chen M, Ansari MS, Cochis A, Rimondini L (2020) Antimicrobial mechanisms and effectiveness of Graphene and Graphene-Functionalized Biomaterials. A scope review, front. Bioeng Biotechnol 8:498689. https://doi.org/10.3389/fbioe.2020.00465

    Article  Google Scholar 

  62. Kannan K, Radhika D, Gnanasangeetha D, Krishna LS, Gurushankar K (2021) Y3 + and Sm3 + co-doped mixed metal oxide nanocomposite: structural, electrochemical, photocatalytic, and antibacterial properties. Appl Surf Sci Adv 4:100085. https://doi.org/10.1016/J.APSADV.2021.100085

    Article  Google Scholar 

  63. Diez-Pascual AM (2017) Development and characterization of chitosan-grafted polycaprolactone / poly (3-hydroxybutyrate-CO-3-hydroxyhexanoate) fiber blends for tissue engineering applications. Int J Comput Methods Exp Meas 5:713–722. https://doi.org/10.2495/CMEM-V5-N5-713-722

    Article  Google Scholar 

  64. Rangayasami A, Kannan K, Joshi S, Subban M (2020) Bioengineered silver nanoparticles using Elytraria Acaulis (L.f.) Lindau leaf extract and its biological applications. Biocatal Agric Biotechnol 27:101690. https://doi.org/10.1016/J.BCAB.2020.101690

    Article  Google Scholar 

  65. Kannan K, Radhika D, Kasai RD, Gnanasangeetha D, Palani G, Gurushankar K, Koutavarapu R, Lee D-Y, Shim J (2022) Facile fabrication of novel ceria-based nanocomposite (CYO-CSO) via co-precipitation: Electrochemical, photocatalytic and antibacterial performances. J Mol Struct 1256:132519. https://doi.org/10.1016/J.MOLSTRUC.2022.132519

    Article  CAS  Google Scholar 

  66. Chinnaiah K, Krishnamoorthi R, Kannan K, Sivaganesh D, Saravanakumar S, Theivasanthi T, Palko N, Grishina M, Maik V, Gurushankar K (2022) Ag nanoparticles synthesized by Datura metel L. Leaf extract and their charge density distribution, electrochemical and biological performance. Chem Phys Lett 807:140083. https://doi.org/10.1016/J.CPLETT.2022.140083

    Article  CAS  Google Scholar 

  67. Yahia IS, Shkir M, Keshk SMAS (2020) Physicochemical properties of a nanocomposite (graphene oxide-hydroxyapatite-cellulose) immobilized by Ag nanoparticles for biomedical applications. Results Phys 16:102990. https://doi.org/10.1016/J.RINP.2020.102990

    Article  Google Scholar 

  68. Goudar N, Vanjeri VN, Kasai D, Gouripur G, Malabadi RB, Masti SP, Chougale RB (2021) ZnO NPs Doped PVA/Spathodea campanulata Thin films for Food Packaging. J Polym Environ 29:2797–2812. https://doi.org/10.1007/s10924-021-02070-0

    Article  CAS  Google Scholar 

  69. Senthil Muthu Kumar T, Senthilkumar K, Ratanit M, Rajini N, Chanunpanich N, Hariram N, Pornwongthong P, Siengchin S (2021) Influence of Titanium Dioxide particles on the filtration of 1,4-Dioxane and Antibacterial Properties of Electrospun Cellulose Acetate and polyvinylidene fluoride nanofibrous membranes. J Polym Environ 29:775–784. https://doi.org/10.1007/s10924-020-01919-0

    Article  CAS  Google Scholar 

  70. Abutalib MM, Rajeh A (2021) Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications. Polym Test 93:107013. https://doi.org/10.1016/J.POLYMERTESTING.2020.107013

    Article  CAS  Google Scholar 

  71. Kumar H, Luthra M, Punia M, Singh RM (2021) Co3O4/PANI nanocomposites as a photocatalytic, antibacterial and anticorrosive agent: experimental and theoretical approach. Colloid Interface Sci Commun 45:100512. https://doi.org/10.1016/J.COLCOM.2021.100512

    Article  CAS  Google Scholar 

  72. Kumar H, Luthra M, Punia M, Kaur P, Kumar R (2023) Co 3 O 4 quantum dot decorated polypyrrole nanocomposites as a flexible, conducting, anticorrosive and antibacterial agent: sustainable experimental and theoretical approach. RSC Sustain 1:523–534. https://doi.org/10.1039/D2SU00104G

    Article  CAS  Google Scholar 

  73. Alamry KA, Almehmadi SJ, Elfaky MA, Al-Shareef HF, Hussein SJAMA (2020) Enhanced antimicrobial activity of new arylidene-based polyketone nanocomposite materials. Polym Technol Mater 59:1973–1986

    CAS  Google Scholar 

Download references

Funding

This work was supported and funded by the Deanship of Scientific Research at  Imam Mohammad Ibn Saud Islamic University (IMSIU) (Grant number IMSIU  RG23032).

Author information

Authors and Affiliations

Authors

Contributions

HA: Supervision, conceptualization, methodology, Writing—original draft, Writing—review & editing. AMA: Visualization, software, Writing—review & editing. NYE: Visualization, investigation, data curation, Writing—review & editing. AR: Data curation, Writing—review & editing, visualization, software.

Corresponding authors

Correspondence to Hanan Alhussain, Azzah M. Alghamdi or A. Rajeh.

Ethics declarations

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhussain, H., Alghamdi, A.M., Elamin, N.Y. et al. Recent Progress in Enhanced Optical, Mechanical, Thermal Properties, and Antibacterial Activity of the Chitosan/Polyvinylalcohol/Co3O4 Nanocomposites for Optoelectronics and Biological Applications. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03191-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03191-y

Keywords

Navigation