Skip to main content

Advertisement

Log in

Synthesis of CoFe2O4/MWCNTs Nanohybrid and its Effect on the Optical, Thermal, and Conductivity of PVA/CMC Composite as an Application in Electrochemical Devices

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The sonochemical approach was used to synthesize of the CoFe2O4/MWCNTs nano-hybrid. The structural characteristics are examined using XRD and TEM techniques. TEM indicated the production of cubic and spherical forms with the average size 12.7 nm of the CoFe2O4 nanoparticles. The casting approach is used to create polymer nanocomposite samples based on CMC/PVA (80%CMC/20% PVA) doped with various concentrations of CoFe2O4/MWCNTs. various techniques are used to investigate the generated films’ optical, thermal, electrical, and dielectric characteristics. The films’ optical characteristics are investigated using the UV–Vis spectra. The energy gap of nanocomposite films decreased with the CoFe2O4/MWCNTs concentration increase in the polymer blend, which decreased from 5.32 to 3.97 eV for the direct transition and decreased from 4.89 to 3.58 eV for the indirect transition. The TGA show the thermal degradation temperature of the nanocomposite films with an increase of the concentration of CoFe2O4/MWCNTs. The thermal stability of the nanocomposite films enhanced whereas the melting point increased from 297 to 323 °C. At an ambient temperature, the dielectric relaxation and AC electrical properties of nanocomposite polymeric films in the frequency range 0.1 Hz to 20 MHz were described. The findings showed the increase of the nanocomposites’ dielectric performance and electrical characteristics with increasing the nanohybrid concentration of CoFe2O4/MWCNTs. The electrical relaxation dynamics in the presence of dielectric were investigated. The electric modulus was used to explore the dielectric characteristics. According to the results of this study, these samples can be used in electrochemical devices such as conductive sensors, super-capacitors and nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.S. Devangamath, B. Lobo, Structural, optical and electrical studies on hybrid material of in situ formed silver sulfide in polymer blend matrix. J. Inorg. Organomet. Polym. Mater. 29, 1466–1475 (2019)

    Article  CAS  Google Scholar 

  2. Q.A. Alsulami, A. Rajeh, Structural, thermal, optical characterizations of polyaniline/polymethyl methacrylate composite doped by titanium dioxide nanoparticles as an application in optoelectronic devices. Opt. Mater. 123, 111820 (2021)

    Article  CAS  Google Scholar 

  3. A. Hashim, Enhanced structural, optical, and electronic properties of In2O3 and Cr2O3 nanoparticles doped polymer blend for flexible electronics and potential applications. J. Inorg. Organomet. Polym. Mater. 30, 3894–3906 (2020)

    Article  CAS  Google Scholar 

  4. K. Ramly, M.I.N. Isa, A.S.A. Khiar, Conductivity and dielectric behaviour studies of starch/PEO + x wt-% NH4NO3 polymer electrolyte. Mater. Res. Innov. 15, s82–s85 (2011)

    Article  Google Scholar 

  5. M.M. Abutalib, A. Rajeh, Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical and mechanical properties of poly (ethylene oxide)/poly (methylmethacrylate) composite" J. Organomet. Chem. 918, 121309 (2020)

    Article  CAS  Google Scholar 

  6. M.R. Atta, Q.A. Alsulami, G.M. Asnag, A. Rajeh, Enhanced optical, morphological, dielectric, and conductivity properties of gold nanoparticles doped with PVA/CMC blend as an application in organoelectronic devices. J. Mater. Sci.: Mater. Electron. 32, 10443–10457 (2021)

    CAS  Google Scholar 

  7. A. Rajeh et al., Nd: YAG nanosecond laser induced growth of Au nanoparticles within CMC/PVA matrix: multifunctional nanocomposites with tunable optical and electrical properties. Compos. Commun. 24, 100662 (2021)

    Article  Google Scholar 

  8. Q.A. Alsulami, A. Rajeh, Synthesis of the SWCNTs/TiO2 nanostructure and its effect study on the thermal, optical, and conductivity properties of the CMC/PEO blend. Results Phys. 28, 104675 (2021)

    Article  Google Scholar 

  9. A. Rajeh, M.A. Morsi, I.S. Elashmawi, Enhancement of spectroscopic, thermal, electrical and morphological properties of polyethylene oxide/carboxymethyl cellulose blends: Combined FT-IR/DFT. Vacuum 159, 430–440 (2019)

    Article  CAS  Google Scholar 

  10. M.A. Saadiah, D. Zhang, Y. Nagao, S.K. Muzakir, A.S. Samsudin, Reducing crystallinity on thin film based CMC/PVA hybrid polymer for application as a host in polymer electrolytes. J. Non-cryst. Solids 511, 201–211 (2019)

    Article  CAS  Google Scholar 

  11. N.F. Mazuki, A.F. Fuzlin, M.A. Saadiah, A.S. Samsudin, An investigation on the abnormal trend of the conductivity properties of CMC/PVA-doped NH4Cl-based solid biopolymer electrolyte system. Ionics 25, 2657–2667 (2019)

    Article  CAS  Google Scholar 

  12. M.M. Abutalib, A. Rajeh, Structural, thermal, optical and conductivity studies of Co/ZnO nanoparticles doped CMC polymer for solid state battery applications. Polym. Test 91, 106803 (2020)

    Article  CAS  Google Scholar 

  13. M.O. Farea et al., Effect of cesium bromide on the structural, optical, thermal and electrical properties of polyvinyl alcohol and polyethylene oxide. J. Mater. Res. Technol. 9, 1530–1538 (2020)

    Article  CAS  Google Scholar 

  14. S. Badr, E. Sheha, R.M. Bayomi, M.G. El-Shaarawy, Structural and electrical properties of pure and H2SO4 doped (PVA) 0.7 (NaI) 0.3 solid polymer electrolyte. Ionics 16, 269–275 (2010)

    Article  CAS  Google Scholar 

  15. R. Manjuladevi, M. Thamilselvan, S. Selvasekarapandian, R. Mangalam, M. Premalatha, S. Monisha, Mg-ion conducting blend polymer electrolyte based on poly (vinyl alcohol)-poly (acrylonitrile) with magnesium perchlorate. Solid State Ion. 308, 90–100 (2017)

    Article  CAS  Google Scholar 

  16. S. Rajendran, M. Sivakumar, R. Subadevi, Effect of salt concentration in poly (vinyl alcohol)-based solid polymer electrolytes. J. Power Sources 124, 225–230 (2003)

    Article  CAS  Google Scholar 

  17. L.U. Khan et al., Synthesis and characterization of CoFe2O4/MWCNTs nanocomposites and high-frequency analysis of their dielectric properties. J. Mater. Eng. Perform. 29, 251–258 (2020)

    Article  CAS  Google Scholar 

  18. M.A. Gabal et al., CoFe2O4/MWCNTs nano-composites structural, thermal, magnetic, electrical properties and dye removal capability. Mater. Res. Express 6, 105059 (2019)

    Article  CAS  Google Scholar 

  19. M. Mujahid et al., NiFe2O4 nanoparticles/MWCNTs nanohybrid as anode material for lithium-ion battery. Ceram. Int. 45(7), 8486–8493 (2019)

    Article  CAS  Google Scholar 

  20. J. Zhu et al., Graphene and graphene-based materials for energy storage applications. Small 10, 3480–3498 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. A.L.M. Reddy et al., Hybrid nanostructures for energy storage applications. Adv. Mater. 24, 5045–5064 (2012)

    Article  CAS  Google Scholar 

  22. Y. Xiao et al., CoFe2O4 -graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for Li-ion batteries. Nano-micro Lett. 6, 307–315 (2014)

    Article  CAS  Google Scholar 

  23. D.H. Kuo et al., Dielectric behaviours of multi-doped BaTiO3/epoxy composites. J. Eur. Ceram. Soc. 21, 1171–1177 (2001)

    Article  CAS  Google Scholar 

  24. J. Acharya, B.G.S. Raj, T.H. Ko, M.S. Khil, H.Y. Kim, B.S. Kim, Facile one pot sonochemical synthesis of CoFe2O4/MWCNTs hybrids with well-dispersed MWCNTs for asymmetric hybrid supercapacitor applications. Int. J. Hydrog. Energy 45, 3073–3085 (2020)

    Article  CAS  Google Scholar 

  25. T.J. Al-Musawi et al., Preparation of multi-walled carbon nanotubes coated with CoFe2O4 nanoparticles and their adsorption performance for Bisphenol A compound. Adv. Powder Technol. 33, 103438 (2022)

    Article  CAS  Google Scholar 

  26. M.A. Gabal, E.A. Al-Harthy, Y.M. Al Angari, M.A. Salam, M.A. Zayed, MWCNTs decorated Mn0. 8Zn0. 2Fe2O4: synthesis, characterization and compositional effect on the structural and magnetic properties. J. Magn. Magn. Mater. 374, 230–237 (2015)

    Article  CAS  Google Scholar 

  27. M.A. Saadiah, A.S. Samsudin, Electrical study on Carboxymethyl CellulosePolyvinyl alcohol based bio-polymer blend electrolytes, in: IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2018), p. 012045

  28. H.A. Alzahrani, CuO and MWCNTs nanoparticles Filled PVA–PVP nanocomposites: morphological, optical, thermal, dielectric, and electrical characteristics. J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-022-02233-z

    Article  Google Scholar 

  29. M.A. Morsi et al., Nd: YAG nanosecond laser induced growth of Au nanoparticles within CMC/PVA matrix: Multifunctional nanocomposites with tunable optical and electrical properties. Compos. Commun. 24, 100662 (2021)

    Article  Google Scholar 

  30. M.F.Z. Kadir, S.R. Majid, A.K. Arof, Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim. Acta 55(4), 1475–1482 (2010). ((n.d.))

    Article  CAS  Google Scholar 

  31. K. Kesavan, S. Rajendran, C.M. Mathew, Studies on poly (vinyl pyrrolidone) based solid polymer blend electrolytes complexed with various lithium salts. Polym. Sci. Ser. B 56, 520–529 (2014)

    Article  CAS  Google Scholar 

  32. S. Rajendran, T. Mahalingam, R. Kannan, Experimental investigations on PAN–PEO hybrid polymer electrolytes. Solid State Ion. 130, 143–148 (2000)

    Article  CAS  Google Scholar 

  33. M.F. Shukur, M.F.Z. Kadir, Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim. Acta 158, 152–165 (2015)

    Article  CAS  Google Scholar 

  34. A. Abdelghany, A. Oraby, M. Farea, Influence of green synthesized gold nanoparticles on the structural, optical, electrical and dielectric properties of (PVP/SA) blend. Phys. B: Condens. Matter 560, 162–173 (2019)

    Article  CAS  Google Scholar 

  35. A. Chebil, B. Ben Doudou, C. Dridi, M. Dammak, Synthesis characterization, optical and electrical properties of polyvinyl alcohol/multi-walled carbon nanotube nanocomposites: a composition dependence study". Mater. Sci. Eng. B 243, 125–130 (2019)

    Article  CAS  Google Scholar 

  36. S. Choudhary, Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. J. Mater. Sci.: Mater. Electron. 29, 10517–10534 (2018)

    CAS  Google Scholar 

  37. T.S. Soliman, S.A. Vshivkov, Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films". J. Non-Cryst. Solids 519, 119452 (2019)

    Article  CAS  Google Scholar 

  38. M.A. Morsi, S.A. El-Khodary, A. Rajeh, Enhancement of the optical, thermal and electrical properties of PEO/PAM:Li polymer electrolyte films doped with Ag nanoparticles. Phys. B: Condens. Matter 539, 88–96 (2018)

    Article  CAS  Google Scholar 

  39. A.M. Abd-Elnaiem et al., Influence of incorporation of gallium oxide nanoparticles on the structural and optical properties of polyvinyl alcohol polymer. J. Inorg. Organomet. Polym. Mater. 31, 4141–4149 (2021)

    Article  CAS  Google Scholar 

  40. A. Rajeh, H.M. Ragab, M.M. Abutalib, Co doped ZnO reinforced PEMA/PMMA composite: Structural, thermal, dielectric and electrical properties for electrochemical applications. J. Mol. Struct. 1217, 128447 (2020)

    Article  CAS  Google Scholar 

  41. M.M. Abutalib, A. Rajeh, Influence of ZnO/Ag nanoparticles doping on the structural, thermal, optical and electrical properties of PAM/PEO composite. Phys. B: Condens. Matter 578, 411796 (2020)

    Article  CAS  Google Scholar 

  42. M.I. Mohammed, Optical properties of ZnO nanoparticles dispersed in PMMA/PVDF blend. J. Mol. Struct. 1169, 9–17 (2018)

    Article  CAS  Google Scholar 

  43. J. Ge, X. Zang et al., Preparation and characterization of PS-PMMA/ZnO nanocomposite films with novel properties of high transparency and UV-shielding capacity. J. Appl. Polym. Sci. 118, 1507–1512 (2010)

    CAS  Google Scholar 

  44. JTauc .Menth A., D. .Wood, Optical and magnetic investigation of the localized states in semiconducting glasses. Phys. Rev. Lett. 25, 749 (1970)

    Article  Google Scholar 

  45. H.M. Ragab, A. Rajeh, Structural, thermal, optical and conductive properties of PAM/PVA polymer composite doped with Ag nanoparticles for electrochemical application. J. Mater. Sci.: Mater. Electron. 31, 16780–16792 (2020)

    CAS  Google Scholar 

  46. V. VK.Saraswat, Kishore, Band gap studies on Se-Te-Sn ternary glassy films. Chalcogenide Lett. 4, 61–64 (2007)

    Google Scholar 

  47. S. Shukla, N.K. Sharma, V. Sajal, Theoretical analysis of surface plasmon resonance based fiber optic sensor using ITO and ZnO thin films. Opt. Quant. Electron. 48, 48–57 (2016)

    Article  CAS  Google Scholar 

  48. W. Liao, A. Gu, G. Liang, L. Yuan, New high performance transparent UVcurable poly(methyl methacrylate) grafted ZnO/silicone-acrylate resin composites with simultaneously improved integrated performance. Colloids Surf. A 396, 74–82 (2012)

    Article  CAS  Google Scholar 

  49. A. Hassen et al., Preparation, dielectric and optical properties of Cr2O3/PVC nanocomposite films. J. Adv. Phys. 4, 571–584 (2014)

    Article  Google Scholar 

  50. A.M. Hezma, I.S. Elashmawi, E.M. Abdelrazek, A. Rajeh, M. Kamal, Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single walled carbon nanotubes. Prog. Nat. Sci. Mater. Int. 27(3), 338–343 (2017)

    Article  CAS  Google Scholar 

  51. A.M. Hezma, A. Rajeh, M.A. Mannaa, An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite". Colloids Surf. A 581, 123821 (2019)

    Article  CAS  Google Scholar 

  52. A.M. Hezma, I.S. Elashmawi, A. Rajeh, M. Kamal, Change spectroscopic, thermal and mechanical studies of PU/PVC blends. Phys. B: Condens. Matter 495, 4–10 (2016)

    Article  CAS  Google Scholar 

  53. D. Wang, H. Li, M. Li, H. Jiang, M. Xia, Z. Zhou, Stretchable conductive polyurethane elastomer in situ polymerized with multi-walled carbon nanotubes. J. Mater. Chem. C 1, 2744–2749 (2013)

    Article  CAS  Google Scholar 

  54. H. Garate, a De Falco, M.S. Moreno, M.L. Fascio, S. Goyanes, N.B. Daccorso, Influence of the electronic distribution of polymers in the spatial conformation of polymer grafted carbon nanotube composites. Phys. B: Condens. Matter 407, 3184–3187 (2012)

    Article  CAS  Google Scholar 

  55. K. Suhailath, M.T. Ramesan, Effect of ceria nanoparticles on mechanical properties, thermal and dielectric properties of poly (butyl methacrylate) nanocomposites. Polym. Compos. 41, 2344–2354 (2020)

    Article  CAS  Google Scholar 

  56. E.M. Abdelrazek, I.S. Elashmawi, A.M. Hezma, A. Rajeh, M. Kamal, Effect of an encapsulate carbon nanotubes (CNTs) on structural and electrical properties of PU/PVC nanocomposites. Phys. B: Condens. Matter 502, 48–55 (2016)

    Article  CAS  Google Scholar 

  57. I.S. Elashmawi, E.M. Abdelrazek, A.M. Hezma, A. Rajeh, Modification and development of electrical and magnetic properties of PVA/PEO incorporated with MnCl2. Phys. B: Condens. Matter 434, 57–63 (2014)

    Article  CAS  Google Scholar 

  58. D. Vanitha, S.A. Bahadur, N. Nallamuthu, A. Shunmuganarayanan, A. Manikandan, Studies on conducting polymer blends: synthesis and characterizations of PVA/PVP doped with CaCl2. J. Nanosci. Nanotechnol. 18, 1723–1729 (2018)

    Article  CAS  PubMed  Google Scholar 

  59. G. Shanmugam, V. Krishnakumar, Effects of anhydrous AlCl3 dopant on the structural, optical and electrical properties of PVA–PVP polymer composite films. Indian J. Phys. 92, 605–613 (2018)

    Article  CAS  Google Scholar 

  60. S. Ramesh, A.H. Yahaya, A.K. Arof, Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ion. 152, 291–294 (2002)

    Article  Google Scholar 

  61. M.A. Morsi, A. Rajeh, A.A. Al-Muntaser, Reinforcement of the optical, thermal and electrical properties of PEO based on MWCNTs/Au hybrid fillers: nanodielectric materials for organoelectronic devices. Compos. Part B: Eng. 173, 106957 (2019)

    Article  CAS  Google Scholar 

  62. F. Gami et al., Structural, optical and electrical studies of chitosan/polyacrylamide blend filled with synthesized selenium nanoparticles. J. Mol. Struct. 1257, 132631 (2022)

    Article  CAS  Google Scholar 

  63. K. Jeyabanu, V. Siva, N. Nallamuthu, S. Selvanayagam, S. Asath Bahadur, A. Manikandan, Investigation of electrochemical studies of magnesium ion conducting poly(vinyl alcohol)– poly (vinyl pyrrolidone) based blend polymers. J. Nanosci. Nanotechnol. 18, 1103–1109 (2018)

    Article  CAS  PubMed  Google Scholar 

  64. M. Anandha Jothi, D. Vanitha, N. Nallamuthu, A. Manikandan, S. Asath, Bahadur, Investigations of lithium ion conducting polymer blend electrolytes using biodegradable cornstarch and PVP. Phys. B: Condens. Matter 580, 411940 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under Grant No. (UJ-21-DR-85). The authors, therefore, acknowledge with thanks the University of Jeddah technical and financial support.

Funding

The Funded was provided by University of Jeddah (Grant No. UJ-21-DR-85).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rajeh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghamdi, H.M., Rajeh, A. Synthesis of CoFe2O4/MWCNTs Nanohybrid and its Effect on the Optical, Thermal, and Conductivity of PVA/CMC Composite as an Application in Electrochemical Devices. J Inorg Organomet Polym 32, 1935–1949 (2022). https://doi.org/10.1007/s10904-022-02322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02322-z

Keywords

Navigation