Skip to main content
Log in

Magneto-Responsive Biopolymer Composite Based on Plasticized Poly(Butylene Succinate-Co-Butylene Adipate) and Fe3O4 for Flexible Actuator Application

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The magnetic soft materials that can actuate in response to the external magnetic stimulus are of a high potential for the soft robotics and biomedical applications. This work reports on the new magneto-responsive materials based on the bio-based poly(butylene succinate-co-butylene adipate) (PBSA). The synthesized magnetite (Fe3O4) nanoparticles were incorporated into the PBSA biopolymer matrix with the Fe3O4 content up to 3 wt%. The addition of Fe3O4 enhanced the magnetic and mechanical properties of the composites; all composites exhibited only the slight increases in the storage modulus in the presence of the external magnetic flux density of 10,000 G. The 3%v/v Fe3O4/PBSA composite exhibited only a small increase in the storage modulus from 7.23 × 105 Pa to 7.55 × 105 Pa without and with the magnetic flux density 10,000 G, respectively. The slight increases observed indicate the retained and favorable material flexibility and softness favoring the magnetic actuation. For the bending performance, the largest bending distance of 15.6 mm with the response time within 10 s and the maximum magnetophoretic force of 0.14 mN under the applied low magnetic flux density of 1300 G were obtained from the composite with the Fe3O4 content of 3.0%v/v with the composite magnetization of 1.719 emu g− 1. The fabricated soft magneto-responsive materials based on PBSA and Fe3O4 nanoparticle are shown here to be potential as soft magneto-responsive materials in the field of actuator such as soft robotic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yang Y, Wu Y, Li C, Yang X, Chen W (2020) Flexible actuators for soft robotics. Adv Intell Syst 20:1900077. https://doi.org/10.1002/aisy.201900077

    Article  Google Scholar 

  2. Liu Y, Shang S, Mo S, Wang P, Yin B, Wei J (2021) Soft actuators built from cellulose paper: a review on actuation, material, fabrication, and applications. J Sci: Adv Mater Devices 6:321–337. https://doi.org/10.1016/j.jsamd.2021.06.004

    Article  CAS  Google Scholar 

  3. Nagal N, Srivastava S, Pandey C, Gupta A, Sharma AK (2022) Alleviation of residual vibrations in hard-magnetic soft actuators using a command-shaping scheme. Polymers 14:3037. https://doi.org/10.3390/polym14153037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao X, Xua S, Sun S, Xu Z, Li J, Gong X (2021) 3D printing magnetic actuators for biomimetic applications. ACS Appl Mater Interfaces 13:30127–30136. https://doi.org/10.1021/acsami.1c08252

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z, Wu Y, Wu D, Sun D, Lin L (2022) Soft magnetic composites for highly deformable actuators by four-dimensional electrohydrodynamic printing. Compos Pt B 231:109596. https://doi.org/10.1016/j.compositesb.2021.109596

    Article  CAS  Google Scholar 

  6. Chung HJ, Parsons AM, Zheng L (2021) Magnetically controlled soft robotics utilizing elastomers and gels in actuation: a review. Adv Intell Syst 3:2000186. https://doi.org/10.1002/aisy.202000186

    Article  Google Scholar 

  7. Kobayashi K, Ikuta K (2009) 3D Magnetic microactuator made of newly developed magnetically modified photocurable polymer and application to swimming micromachine and microscrewpump, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 2009, pp. 11–14. https://doi.org/10.1109/MEMSYS.2009.4805306

  8. Chathuranga H, Marriam I, Chen S, Zhang Z, MacLeod J, Liu Y, Yang H, Yan C (2022) Multistimulus-responsive graphene oxide/Fe3O4/starch soft actuators. ACS Appl Mater Interfaces 14:16772–16779. https://doi.org/10.1021/acsami.2c03486

    Article  CAS  PubMed  Google Scholar 

  9. Llamas-Hernández M, López-Walle B, Rakotondrabe M, Reyes-Melo E (2018) Dynamic behavior of magnetic hybrid films of polyvinyl butyral/iron oxide nanoparticles (PVB/Fe2O3) for their control as microactuators. Phys B 549:113–117. https://doi.org/10.1016/j.physb.2017.10.095

    Article  CAS  Google Scholar 

  10. Zhang Z, Li X, Yu X, Chai H, Li Y, Wu H, Jiang S (2019) Magnetic actuation bionic robotic gripper with bistable morphing structure. Compos Struct 229:111422. https://doi.org/10.1016/j.compstruct.2019.111422

    Article  Google Scholar 

  11. Zhang J, Rem Z, Hu W, Soon RH, Yasa IC, Liu Z, Sitti M (2021) Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci Robot 6:eabf0112. https://doi.org/10.1126/scirobotics.abf0112

    Article  PubMed  PubMed Central  Google Scholar 

  12. Deng N, Li J, Lyu H, Huang R, Liu H, Guo C (2022) Degradable silk-based soft actuators with magnetic responsiveness. J Mat Chem B 10:7650. https://doi.org/10.1039/d2tb01328b

    Article  CAS  Google Scholar 

  13. Ganguly S, Margel S (2021) Design of magnetic hydrogels for hyperthermia and drug delivery. Polymers 13:4259. https://doi.org/10.3390/polym13234259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim Y, Zhao X (2022) Magnetic soft materials and robots. Chem Rev 122:5317–5364. https://doi.org/10.1021/acs.chemrev.1c00481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao S, Jia R, Yang J, Dai L, Ji N, Xiong L, Sun Q (2022) Development of chitosan/tannic acid/corn starch multifunctional bilayer smart films as pH-responsive actuators and for fruit preservation. Int J Biol Macromol 205:419–429. https://doi.org/10.1016/j.ijbiomac.2022.02.101

    Article  CAS  PubMed  Google Scholar 

  16. Banitaba SN, Ebadi SV, Salimi P, Bagheri A, Gupta A, Arifeen WU, Chaudhary V, Mishra YK, Kaushik A, Mostafavi E (2022) Biopolymer-based electrospun fibers in electrochemical devices: versatile platform for energy, environment, and health monitoring. Mater Horiz 9:2914–2948. https://doi.org/10.1039/D2MH00879C

    Article  CAS  PubMed  Google Scholar 

  17. Feijoo P, Mohanty AK, Rodriguez-Uribe A, Gámez-Pérez J, Cabedo L, Misra M (2023) Biodegradable blends from bacterial biopolyester PHBV and bio-based PBSA: study of the effect of chain extender on the thermal, mechanical and morphological properties. Int J Biol Macromol 225:1291–1305. https://doi.org/10.1016/j.ijbiomac.2022.11.188

    Article  CAS  PubMed  Google Scholar 

  18. Altieri R, Seggiani M, Esposito A, Cinelli P, Stanzione V (2021) Thermoplastic blends based on poly(butylene succinate–co–adipate) and different collagen hydrolysates from tanning industry—II: aerobic biodegradation in composting medium. J Polym Environ 29:3375–3388. https://doi.org/10.1007/s10924-021-02124-3

    Article  CAS  Google Scholar 

  19. Palai B, Mohanty S, Nayak SK (2020) Synergistic effect of polylactic acid (PLA) and poly(butylene succinate-co-adipate) (PBSA) based sustainable, reactive, super toughened eco-composite blown films for flexible packaging applications. Polym Test 83:106130. https://doi.org/10.1016/j.polymertesting.2019.106130

    Article  CAS  Google Scholar 

  20. Dong L, Chen G, Liu G, Huang X, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty AM (2022) A review on recent advances in the applications of composite Fe3O4 magnetic nanoparticles in the food industry. Crit Rev Food Sci Nutr 1–29. https://doi.org/10.1080/10408398.2022.2113363

  21. Martínez SAH, Melchor-Martínez EM, Herńandez JAR, Parra-Saldívar R, Iqbal HMN (2022) Magnetic nanomaterials assisted nanobiocatalysis systems and their applications in biofuels production. Fuel 312:122927. https://doi.org/10.1016/j.fuel.2021.122927

    Article  CAS  Google Scholar 

  22. Aghayi-Anaraki M, Safarifard V (2020) Fe3O4@MOF magnetic nanocomposites: synthesis and applications. Eur J Inorg Chem 20:1916–1937. https://doi.org/10.1002/ejic.202000012

    Article  CAS  Google Scholar 

  23. Nguyen MD, Tran HV, Xu S, Lee TR (2021) Fe3O4 nanoparticles: structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Appl Sci 11:11301. https://doi.org/10.3390/app112311301

    Article  CAS  PubMed  Google Scholar 

  24. Ganguly S, Margel S (2022) 3D printed magnetic polymer composite hydrogels for hyperthermia and magnetic field driven structural manipulation. Prog Polym Sci 131:101574. https://doi.org/10.1016/j.progpolymsci.2022.101574

    Article  CAS  Google Scholar 

  25. Askeland DR (1994) The Science and Engineering of materials, third edn. PWS Publishing Company, Boston

    Google Scholar 

  26. Petcharoen K, Sirivat A (2016) Magneto-electro-responsive material based on magnetite nanoparticles/polyurethane composites. Mater Sci Eng C 61:312–323. https://doi.org/10.1016/j.msec.2015.12.014

    Article  CAS  Google Scholar 

  27. Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZA, Amin J (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–7548. https://doi.org/10.3390/molecules18077533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abd El-Aziz ME, Youssef AM, Kamel S, Turky G (2019) Conducting hydrogel based on chitosan, polypyrrole and magnetite nanoparticles: a broadband dielectric spectroscopy study. Polym Bull 76:3175–3194. https://doi.org/10.1007/s00289-018-2545-1

    Article  CAS  Google Scholar 

  29. Silva VAJ, Andrade PL, Silva MPC, Bustamante AD, De Los Santos Valladares L, Albino Aguiar J (2013) Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J Magn Magn Mater 343:138–143. https://doi.org/10.1016/j.jmmm.2013.04.062

    Article  CAS  Google Scholar 

  30. Boruah PK, Borah DJ, Handique J, Sharma P, Sengupta P, Das MR (2015) Facile synthesis and characterization of Fe3O4 nanopowder and Fe3O4/reduced graphene oxide nanocomposite for methyl blue adsorption: a comparative study. J Environ Chem Eng 3:1974–1985. https://doi.org/10.1016/j.jece.2015.06.030

    Article  CAS  Google Scholar 

  31. Yang X, Chen W, Huaang J, Zhou Y, Zhu Y, Li C (2015) Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system. Sci Rep 5:10632. https://doi.org/10.1038/srep10632

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liang Y, Lu W (2020) Gamma-irradiation synthesis of Fe3O4/rGO nanocomposites as lithium-ion battery anodes. J Mater Sci Mater Electron 31:17075–17083. https://doi.org/10.1007/s10854-020-04268-9

    Article  CAS  Google Scholar 

  33. Pei M, Wu Y, Qi Z, Mei D (2020) Synthesis and electrochemical performance of NiO/Fe3O4/rGO as anode material for lithium ion battery. Ionics 26:3831–3840. https://doi.org/10.1007/s11581-020-03545-1

    Article  CAS  Google Scholar 

  34. Dash A, Ahmed MT, Selvaraj R (2019) Mesoporous magnetite nanoparticles synthesis using the Peltophorum pterocarpum pod extract, their antibacterial efficacy against pathogens and ability to remove a pollutant dye. J Mol Struct 1178:268–273. https://doi.org/10.1016/j.molstruc.2018.10.042

    Article  CAS  Google Scholar 

  35. Manohar A, Krishnamoorthi C (2017) Site selective Cu2+ substitution in single crystal Fe3O4 biocompatible nanospheres by solvothermal reflux method. J Cryst Growth 473:66–74. https://doi.org/10.1016/j.jcrysgro.2017.05.013

    Article  CAS  Google Scholar 

  36. Gabal MA, Kosa S, Almutairi TS (2014) Cr-substitution effect on the structural and magnetic properties of nano-sized NiFe2O4 prepared via novel chitosan route. J Magn Magn Mater 356:37–41. https://doi.org/10.1016/j.jmmm.2013.12.044

    Article  CAS  Google Scholar 

  37. Martínez-Mera I, Espinosa-Pesqueira ME, Pérez-Hernández R, Arenas-Alatorre J (2007) Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Materials 61:4447–4451. https://doi.org/10.1016/j.matlet.2007.02.018

    Article  CAS  Google Scholar 

  38. Li Q, Kartikowati CW, Horie S, Ogi T, Iwaki T, Okuyama K (2017) Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci Rep 7:9894. https://doi.org/10.1038/s41598-017-09897-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Radoń A, Drygała A, Hawełek Ł, Łukowiec D (2017) Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers. Mater Charact 131:148–156. https://doi.org/10.1016/j.matchar.2017.06.034

    Article  CAS  Google Scholar 

  40. Wang X, Deng A, Cao W, Li Q, Wang L, Zhou J, Hu B, Xing X (2018) Synthesis of chitosan/poly (ethylene glycol)-modified magnetic nanoparticles for antibiotic delivery and their enhanced anti-biofilm activity in the presence of magnetic field. J Mater Sci 53:6433–6449. https://doi.org/10.1007/s10853-018-1998-9

    Article  CAS  Google Scholar 

  41. An Q, Lv F, Liu Q, Han C, Zhao K, Sheng J, Wei Q, Yan M, Mai L (2014) Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett 14:6250–6256. https://doi.org/10.1021/nl5025694

    Article  CAS  PubMed  Google Scholar 

  42. Ai Q, Yuan Z, Huang R, Yang C, Jiang G, Xiong J, Huang Z, Yuan S (2019) One-pot co-precipitation synthesis of Fe3O4 nanoparticles embedded in 3D carbonaceous matrix as anode for lithium ion batteries. J Mater Sci 54:4212–4224. https://doi.org/10.1007/s10853-018-3141-3

    Article  CAS  Google Scholar 

  43. Aderibigbe AD, Crane RA, Lees MR, Clark AJ (2020) Selective uptake of Ag(I) from aqueous solutions using ionic liquid-modified iron oxide nanoparticles. J Nanopart Res 22:216. https://doi.org/10.1007/s11051-020-04944-1

    Article  CAS  Google Scholar 

  44. Petcharoen K, Sirivat A (2012) Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater Sci Eng B 177:421–427. https://doi.org/10.1016/j.mseb.2012.01.003

    Article  CAS  Google Scholar 

  45. Siracusa V, Lotti N, Munari A, Rosa MD (2015) Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: gas barrier properties after stressed treatments. Polym Degrad Stabil 119:35–45. https://doi.org/10.1016/j.polymdegradstab.2015.04.026

    Article  CAS  Google Scholar 

  46. Gao M, Gong X, Lv M, Song W, Ma X, Qi Y, Wang L (2016) Effect of temperature and pH on the Sorption of Dibutyl Phthalate on Humic Acid. Water Air Soil Pollut 227:55. https://doi.org/10.1007/s11270-016-2759-5

    Article  CAS  Google Scholar 

  47. Kurokawa N, Matsumoto K, Hotta A (2022) Highly-toughened and dimensionally-stable TEMPO cellulose nanofiber/bio-PBSA nanocomposites fabricated via Pickering emulsion process. Compos Sci Technol 223:109402. https://doi.org/10.1016/j.compscitech.2022.109402

    Article  CAS  Google Scholar 

  48. Sokołowska M, Nowak-Grzebyta J, Stachowska E, Fray ME (2022) Enzymatic catalysis in favor of blocky structure and higher crystallinity of poly(butylene succinate)-co-(dilinoleic succinate) (PBS-DLS) copolymers of variable segmental composition. Materials 15:1132. https://doi.org/10.3390/ma15031132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ray SS, Bousmina M, Okamoto K (2005) Structure and properties of nanocomposites based on poly(butylene succinate-co-adipate) and organically modified montmorillonite. Macromol Mater Eng 290:759–768. https://doi.org/10.1002/mame.200500203

    Article  CAS  Google Scholar 

  50. Seggiani M, Gigante V, Cinelli P, Coltelli MB, Sandroni M, Anguillesi I, Lazzeri A (2019) Processing and mechanical performances of poly(butylene succinate–co–adipate) (PBSA) and raw hydrolyzed collagen (HC) thermoplastic blends. Polym Test 77:105900. https://doi.org/10.1016/j.polymertesting.2019.105900

    Article  CAS  Google Scholar 

  51. Foghmoes S, Teocoli F, Brodersen K, Klemensø T, Della Negra M (2016) Novel ceramic processing method for substitution of toxic plasticizers. J Eur Ceram Soc 36:3441–3449. https://doi.org/10.1016/j.jeurceramsoc.2016.05.043

    Article  CAS  Google Scholar 

  52. Rajagukguk J, Simamora P, Saragih CS, Abdullah H, Gultom NS, Imaduddin A (2020) Superparamagnetic behaviour and surface analysis of Fe3O4/PPY/CNT nanocomposites. J Nanomater 2020:8174871. https://doi.org/10.1155/2020/8174871

  53. Rotjanasuworapong K, Lerdwijitjarud W, Sirivat A (2023) Dual electro- and magneto-induced bending actuators of magnetite-loaded agarose ionogels. Carbohydr Polym 310:120741. https://doi.org/10.1016/j.carbpol.2023.120741

    Article  CAS  PubMed  Google Scholar 

  54. Stavropoulos SG, Sanida A, Psarras GC (2022) Assessing the effect of Fe3O4 nanoparticles on the thermomechanical performance of different forms of carbon allotropes/epoxy hybrid nanocomposites. Appl Mech 3:560–572. https://doi.org/10.3390/applmech3020033

    Article  Google Scholar 

  55. Ahmad Khairi MH, Mazlan SA, Ubaidillah U, Mohamed Khaidir RE, Nordin NA, Faizal Johari MA, Abdul Aziz SA, Shilan ST, Choi SB (2023) The effect of salt water ageing on the mechanical and rheological properties of magnetorheological elastomer. Sci Rep 13:5810. https://doi.org/10.1038/s41598-023-33171-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reyes-Melo ME, Torres-Castro A, Puente-Córdova J, García-Loera AF, López-Walle B (2018) Synthesis and characterization of a polymeric magnetic hybrid material composed of iron oxide nanoparticles and polyvinyl butyral. Ingeniería investigación y tecnología. XIX:113–123. https://doi.org/10.22201/fi.25940732e.2018.19n1.010

  57. Jayakrishnan P, Ramesan MT (2017) Synthesis, structural, magnetoelectric and thermal properties of poly (anthranilic acid)/magnetite nanocomposites. Polym Bull 74:3179–3198. https://doi.org/10.1007/s00289-016-1883-0

    Article  CAS  Google Scholar 

  58. Petcharoen K, Sirivat A (2016) Dual responses of magnetite-graphene hybrid in polyurethane under magnetic and electric stimuli. Sens Actuator A-Phys 251:26–34. https://doi.org/10.1016/j.sna.2016.09.041

    Article  CAS  Google Scholar 

  59. Zrinyi M (2014) Magnetically responsive polymer gels and elastomers: properties, synthesis and applications. In: Aguilar MR, Román JS (eds) Smart polymers and their applications. Woodhead Publishing Limited, Cambridge. https://doi.org/10.1533/9780857097026.1.134.

    Chapter  Google Scholar 

  60. Bednarek S (1999) The giant magnetostriction in ferromagnetic composites within an elastomer matrix. Appl Phys A 68:63–67. https://doi.org/10.1007/s003390050854

    Article  CAS  Google Scholar 

  61. Guan X, Dong. X, Ou J (2008) Magnetostrictive effect of magnetorheological elastomer. J Magn Magn Mater 320:158–163. https://doi.org/10.1016/j.jmmm.2007.05.043

    Article  CAS  Google Scholar 

  62. Ganguly S, Margel S (2020) Remotely controlled magneto-regulation of therapeutics from magnetoelastic gel matrices. Biotechnol Adv 44:107611. https://doi.org/10.1016/j.biotechadv.2020.107611

    Article  CAS  PubMed  Google Scholar 

  63. Puente-Córdova JG, Reyes-Melo ME, López-Walle B, Miranda-Valdez IY, Torres-Castro A (2022) Characterization of a magnetic hybrid film fabricated by the in-situ synthesis of iron oxide nanoparticles into ethyl cellulose polymer. Cellulose 29:3845–3857. https://doi.org/10.1007/s10570-022-04528-3

    Article  CAS  Google Scholar 

  64. Farshad M, Benine A (2004) Magnetoactive elastomer composites. Polym Test 23:347–353. https://doi.org/10.1016/S0142-9418(03)00103-X

    Article  CAS  Google Scholar 

  65. Sen A, Bhattacharya M (2000) Residual stresses and density gradient in injection molded starch/synthetic polymer blends. Polymer 41:9177–9190. https://doi.org/10.1016/S0032-3861(00)00300-1

    Article  CAS  Google Scholar 

  66. Varga Z, Filipcsei G, Szilágyi A, Zrínyi M (2005) Electric and magnetic field-structured smart composites. Macromol Symp 227:123–133. https://doi.org/10.1002/masy.200550912

    Article  CAS  Google Scholar 

  67. Wang X, Han B, Yu RP, Li FC, Zhao ZY, Zhang QC, Lu TJ (2018) Magnetic-responsive Fe3O4 nanoparticle-impregnated cellulose paper actuators. Extreme Mech Lett 25:53–59. https://doi.org/10.1016/j.eml.2018.10.003

    Article  CAS  Google Scholar 

  68. Macedo VM, Pereira N, Tubio CR, Martins P, Costa CM, Lanceros-Mendez S (2022) Carrageenan based printable magnetic nanocomposites for actuator applications. Compos Sci Technol 224:109485. https://doi.org/10.1016/j.compscitech.2022.109485

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports: the CEAP Research Unit, the Ratchadapisek Somphot Fund for Postdoctoral Fellowship, the Thailand Science Research and Innovation Fund of Chulalongkorn University, and the National Research Council of Thailand (NRCT). The PBSA materials were supplied by the PTT Polymer Marketing Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization of this study. Methodology, formal analysis, and investigation were performed by NT. The first draft of the manuscript was written by NT and AS critically reviewed and edited the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Anuvat Sirivat.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thummarungsan, N., Sirivat, A. Magneto-Responsive Biopolymer Composite Based on Plasticized Poly(Butylene Succinate-Co-Butylene Adipate) and Fe3O4 for Flexible Actuator Application. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03190-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03190-z

Keywords

Navigation