Skip to main content
Log in

Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magneto-mechanical actuators which are based on a single crystalline domain of oligo(ω-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Garcia-Marquez, A. Demortiere, B. Heinrich, D. Guillon, S. Begin-Colin and B. Donnio, J Mater Chem 21, 8994 (2011).

    Article  CAS  Google Scholar 

  2. J.M. Park, S.J. Kim, J.H. Jang, Z.J. Wang, P.G. Kim, D.J. Yoon, J. Kim, G. Hansen and K.L. DeVries, Compos Part B-Eng 39, 1161 (2008).

    Article  Google Scholar 

  3. M.M. Said, J. Yunas, B. Bais, A.A. Hamzah and B.Y. Majlis, Micromachines-Basel 9 (2018).

  4. R. Fuhrer, E.K. Athanassiou, N.A. Luechinger and W.J. Stark, Small 5, 383 (2009).

    Article  CAS  Google Scholar 

  5. M.M. Said, J. Yunas, R.E. Pawinanto, B.Y. Majlis and B. Bais, Sensor Actuat A-Phys 245, 85 (2016).

    Article  CAS  Google Scholar 

  6. J. Thevenot, H. Oliveira, O. Sandre and S. Lecommandoux, Chem Soc Rev 42, 7099 (2013).

    Article  CAS  Google Scholar 

  7. R.T. Woodward, C.I. Olariu, E.A. Hasan, H.H.P. Yiu, M.J. Rosseinsky and J.V.M. Weaver, Soft Matter 7, 4335 (2011).

    Article  CAS  Google Scholar 

  8. L.K. Lagorce, O. Brand and M.G. Allen, J Microelectromech S 8, 2 (1999).

    Article  Google Scholar 

  9. D. Szabo, G. Szeghy and M. Zrinyi, Macromolecules 31, 6541 (1998).

    Article  CAS  Google Scholar 

  10. H. Lee, J. Kim, J. Kim, S.E. Chung, S.-E. Choi and S. Kwon, Nat Mater 10, 747 (2011).

    Article  Google Scholar 

  11. M. Zrinyi, Colloid Polym Sci 278, 98 (2000).

    Article  CAS  Google Scholar 

  12. V.Q. Nguyen, A.S. Ahmed and R.V. Ramanujan, Adv Mater 24, 4041 (2012).

    Article  CAS  Google Scholar 

  13. M.Y. Razzaq, M. Behl, K. Kratz and A. Lendlein, Adv Mater 25, 5730 (2013).

    Article  CAS  Google Scholar 

  14. L. Wang, M.Y. Razzaq, T. Rudolph, M. Heuchel, U. Nochel, U. Mansfeld, Y. Jiang, O.E.C. Gould, M. Behl, K. Kratz and A. Lendlein, Mater Horiz 5, 861 (2018).

    Article  CAS  Google Scholar 

  15. S. Campbell, D. Maitland and T. Hoare, ACS Macro Lett 4, 312 (2015).

    Article  CAS  Google Scholar 

  16. X.L. Liu, G. Zhao, Z.R. Chen, F. Panhwar and X.M. He, ACS Appl Mater Inter 10, 16822 (2018).

    Article  CAS  Google Scholar 

  17. F.H. Zhang, Z.C. Zhang, C.J. Luo, I.T. Lin, Y.J. Liu, J.S. Leng and S.K. Smoukov, J Mater Chem C 3, 11290 (2015).

    Article  CAS  Google Scholar 

  18. H. Meng and J. Hu, J Intel Mat Syst Str 21, 859 (2010).

    Article  CAS  Google Scholar 

  19. M. Ma, Y. Zhang, X.L. Shen, J. Xie, Y. Li and N. Gu, Nano Res 8, 600 (2015).

    Article  CAS  Google Scholar 

  20. Y.H. Lien, T.M. Wu, J.H. Wu and J.W. Liao, J Nanopart Res 13, 5065 (2011).

    Article  CAS  Google Scholar 

  21. M. Behl, K. Kratz, J. Zotzmann, U. Nochel and A. Lendlein, Adv Mater 25, 4466 (2013).

    Article  CAS  Google Scholar 

  22. M.Y. Razzaq, M. Behl and A. Lendlein, MRS Advances, doi:10.1557/adv.2018.613 (2018).

  23. A. Arnebold and A. Hartwig, Polymer 83, 40 (2016).

    Article  CAS  Google Scholar 

  24. M.Y. Razzaq, M. Behl, U. Frank, J. Koetz, W. Szczerba and A. Lendlein, J Mater Chem 22, 9237 (2012).

    Article  CAS  Google Scholar 

  25. M.Y. Razzaq, M. Behl, U. Nochel and A. Lendlein, Polymer 55, 5953 (2014).

    Article  CAS  Google Scholar 

  26. M.Y. Razzaq, M. Behl and A. Lendlein, MRS Soc Symp Proc 1718, 71 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razzaq, M.Y., Behl, M. & Lendlein, A. Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities. MRS Advances 4, 1057–1065 (2019). https://doi.org/10.1557/adv.2019.123

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.123

Navigation