Skip to main content
Log in

Synthesis and electrochemical performance of NiO/Fe3O4/rGO as anode material for lithium ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

NiO/Fe3O4/rGO composite materials were successfully obtained via a solvothermal route and characterized by charge/discharge test, TEM, XRD, SEM, EIS, HRTEM, XPS, CV, etc. The results showed that the Fe3O4 nanospheres have an average size around 150 nm, NiO is relatively larger (about 300 nm) and agglomerated by rod-shaped particles. The nanospheres of Fe3O4 and rod-shaped NiO particles were distributed on the surface of reduced grapheme oxide. The BET specific surface and BJH desorption average pore diameter of NiO/Fe3O4/rGO are 497.26 m2 g−1 and 1.23 nm, respectively, so it improves the contact area between electrode materials and electrolyte, make ion diffusion path shorter and facilitates ion insertion/desertion. Discharge capacity was 841 mAh g−1 at the first cycle and maintain 647 mAh g−1 after 200 cycles at the current density of 500 mA g−1, and even at the current density of 1000 mA g−1, the discharge capacity can keep 582 mAh g−1 after 200 cycles with a well Coulombic efficiency and retention. And electrochemical impedance of NiO/Fe3O4 and NiO/Fe3O4/rGO is 110 Ω and 75 Ω, respectively, indicating that the material has a good ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888

    CAS  PubMed  Google Scholar 

  2. Shi C, Xiang K, Zhu Y, Chen X, Zhou W, Chen H (2017) Preparation and electrochemical properties of nanocable-like Nb2O5/surface-modified carbon nanotubes composites for anode materials in lithium ion batteries. Electrochim Acta 246:1088–1096

    CAS  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    CAS  Google Scholar 

  4. Tarascon J-M (2010) Is lithium the new gold? Nat Chem 2:510

    CAS  PubMed  Google Scholar 

  5. Chen SP, Wu QN, Wen M, Wu QS, Li JQ, Cui Y, Pinna N, Fan YF, Wu T (2018) Sea sponge-like structure of nano-Fe3O4 on skeleton-C with long cycle life under high rate for Li-ion batteries. ACS Appl Mater Interfaces 10:19656–19663

    CAS  PubMed  Google Scholar 

  6. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457

    CAS  PubMed  Google Scholar 

  7. Shi JH, Li XC, He GH, Zhang L, Li M (2015) Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors. J Mater Chem A 3:20619–20626

    CAS  Google Scholar 

  8. Qi ZQ, Wu YD, Li XF, Qu Y, Yang YY, Mei DJ (2019) Microwave-assisted synthesis of CuC2O4 xH2O for anode materials in lithium-ion batteries with a high capacity. Ionics 26:33–42

    Google Scholar 

  9. Zhu QZ, Chang XQ, Sun N, Chen RJ, Zhao YN, Xu B, Wu F (2018) Confined growth of nano-Na3V2(PO4)3 in porous carbon framework for high-rate Na-ion storage. ACS Appl Mater Interfaces 11:3107–3115

    Google Scholar 

  10. Sharma RA, Seefurth RN (1976) Thermodynamic properties of the lithium-silicon system. J Electrochem Soc 123:1763–1768

    CAS  Google Scholar 

  11. Qu G, Wang J, Liu GY, Tian BB, Su CL, Chen ZS, Rueff JS, Wang ZC (2019) Vanadium doping enhanced electrochemical performance of molybdenum oxide in lithium-ion batteries. Adv Funct Mater 29:1805227

    Google Scholar 

  12. Velmurugan M, Chen SM (2017) Synthesis and characterization of porous MnCo2O4 for electrochemical determination of cadmium ions in water samples. Sci Rep 7:653

    PubMed  PubMed Central  Google Scholar 

  13. Hou XJ, Wang XF, Liu B, Wang QF, Luo T, Chen D, Shen GZ (2014) Hierarchical MnCo2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale 6:8858–8864

    CAS  PubMed  Google Scholar 

  14. Li T, Li XH, Wang ZX, Guo HJ, Hu QY, Peng WJ (2016) Robust synthesis of hierarchical mesoporous hybrid NiO–MnCo2O4 microspheres and their application in lithium-ion batteries. Electrochim Acta 191:392–400

    CAS  Google Scholar 

  15. Zhang ZW, Li ZQ, Yin LW (2018) Hollow prism NiCo2S4 linked with interconnected reduced graphene oxide as a high performance anode material for sodium and lithium ion batteries. New J Chem 42:1467–1476

    CAS  Google Scholar 

  16. Ni SB, Liu JL, Chao DL, Mai LQ (2019) Vanadate-based materials for Li-ion batteries: the search for anodes for practical applications. Adv Energy Mater 9:1803324

    Google Scholar 

  17. Ni SB, Zheng B, Liu JL, Chao DL, Yang XL, Shen ZX, Zhao JB (2018) Self-adaptive electrochemical reconstruction boosted exceptional Li+ ion storage in a Cu3P@C anode. J Mater Chem A 6:18821–18826

    CAS  Google Scholar 

  18. Cui ZM, Jiang LY, Song WG, Guo YG (2009) High-yield gas−liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chem Mater 21:1162–1166

    CAS  Google Scholar 

  19. Sarac Oztuna FE, Unal O, Erdem E, Yagci Acar H, Unal U (2019) Layer-by-layer grown electrodes composed of cationic Fe3O4 nanoparticles and graphene oxide nanosheets for electrochemical energy storage devices. J Phys Chem C 123:3393–3401

    CAS  Google Scholar 

  20. Lyu HL, Li PP, Liu JR, Mahurin S, Chen JH, Hensley DK, Veith GM, Dai S, Sun XG (2018) Aromatic polyimide/graphene composite organic cathodes for fast and sustainable lithium-ion batteries. ChemSusChem 11:763–772

    CAS  PubMed  Google Scholar 

  21. Yang X, Tang YB, Huang X, Xue HT, Kang WP, Li WY, Ng TW, Lee CS (2015) Lithium ion battery application of porous composite oxide microcubes prepared via metal-organic frameworks. J Power Sources 284:109–114

    CAS  Google Scholar 

  22. Yu QX, Ma SA, Zhou HH, Li JW, Wang ZQ, Tan Z, Chen L, Huang ZY, Fu CP, Kuang YF (2019) Partial self-sacrificing templates synthesis of sandwich-like mesoporous CN@ Fe3O4@ CN hollow spheres for high-performance Li-ion batteries. Int J Hydrog Energy 44:1816–1826

    CAS  Google Scholar 

  23. Reddy YVM, Sravani B, Agarwal S, Gupta VK, Madhavi G (2018) Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly (DPA)/SiO2@ Fe3O4 modified carbon paste electrode. J Electroanal Chem 820:168–175

    Google Scholar 

  24. Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18:3941–3946

    CAS  Google Scholar 

  25. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

  26. Ni SB, Li T, Lv XH, Yang XL, Zhang LL (2013) Designed constitution of NiO/Ni nanostructured electrode for high performance lithium ion battery. Electrochim Acta 91:267–274

    CAS  Google Scholar 

  27. Zhang X, Feng ZB, Liu L, Zhang XM, Wang ZR, Lu P, Sun Q (2019) One-pot synthesis of Ag-decorated pomegranate seed-like Fe3O4 composite for high-performance lithium-ion battery. Ionics 25:4099–4107

    CAS  Google Scholar 

  28. Liang CL, Liu Y, Bao RY, Luo Y, Yang W, Xie BH, Yang MB (2016) Effects of Fe3O4 loading on the cycling performance of Fe3O4/rGO composite anode material for lithium ion batteries. J Alloys Compd 678:80–86

    CAS  Google Scholar 

  29. Lee DH, Kim DW, Park JG (2008) Enhanced rate capabilities of nanobrookite with electronically conducting MWCNT networks. Cryst Growth Des 8:4506–4510

    CAS  Google Scholar 

  30. Yin JF, Cao HQ, Zhou ZF, Zhang JX, Qu MZ (2012) SnS2@ reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. J Mater Chem 45:23963–23970

    Google Scholar 

  31. Mei L, Xu C, Yang T, Ma JM, Chen LB, Li QH, Wang TH (2013) Superior electrochemical performance of ultrasmall SnS2 nanocrystals decorated on flexible RGO in lithium-ion batteries. J Mater Chem A 1:8658–8664

    CAS  Google Scholar 

  32. Zhang HM, Guo D, Zhu J, Li QH, Chen LB, Wang TH (2015) A layer-by-layer deposition strategy of fabricating NiO@rGO composites for advanced electrochemical capacitors. Electrochim Acta 152:378–382

    CAS  Google Scholar 

  33. Storck S, Bretinger H, Maier WF (1998) Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl Catal A Gen 174:137–146

    CAS  Google Scholar 

  34. Xiong SL, Chen JS, Lou XW, Zeng HC (2012) Mesoporous Co3O4 and CoO@ C topotactically transformed from chrysanthemum-like CO(CO3)0.5 (OH)·0.11 H2O and their lithium-storage properties. Adv Funct Mater 2:861–871

    Google Scholar 

  35. Lv HJ, Ma L, Zeng P, Ke DN, Peng TY (2010) Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light. J Mater Chem 18:3665–3672

    Google Scholar 

  36. Zhai YJ, Mao HZ, Liu P, Ren XC, Xu LQ, Qian YT (2015) Facile fabrication of hierarchical porous rose-like NiCo2O4 nanoflake/MnCo2O4 nanoparticle composites with enhanced electrochemical performance for energy storage. J Mater Chem A 31:16142–16149

    Google Scholar 

  37. Ge DH, Wu JJ, Qu GL, Deng YY, Geng HB, Zheng J, Gu HW (2016) Rapid and large-scale synthesis of bare Co3O4 porous nanostructures from an oleate precursor as superior Li-ion anodes with long-cycle lives. Dalton Trans 34:13509–13513

    Google Scholar 

  38. Wang Y, Gao Y, Shao J, Holze R, Chen Z, Yun YX (2018) Ultrasmall Fe3O4 nanodots within N-doped carbon frameworks from MOFs uniformly anchored on carbon nanowebs for boosting Li-ion storage. J Mater Chem A 8:3659–3666

    Google Scholar 

  39. Ren H, Liu JQ, Su FH, Ge SZ, Yuan A, Dai WM, Hu YQ (2017) Relighting photosensitizers by synergistic integration of albumin and perfluorocarbon for enhanced photodynamic therapy. ACS Appl Mater Interfaces 9:3463–3473

    CAS  PubMed  Google Scholar 

  40. Xiao ZC, Li Y, Liang CL, Bao RY, Yang MB, Yang W (2019) Scalable synthesis of an artificial polydopamine solid-electrolyte-interface-assisted 3D rGO/Fe3O4@ PDA hydrogel for a highly stable anode with enhanced lithium-ion-storage properties. ChemElectroChem 6:1069–1077

    CAS  Google Scholar 

  41. Xiao ZC, Li Y, Liang CL, Bao RY, Yang MB, Yang MB, Yang W (2020) Driven by electricity: multilayered GO-Fe3O4@PDA-PAM flake assembled micro flower-like anode for high-performance lithium ion batteries. Appl Surf Sci 499:143934

    CAS  Google Scholar 

  42. Ren MM, Yang MZ, Liu WL, Li M, Su LW, Qiao CD, Wu XB, Ma HY (2016) Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries. Electrochim Acta 194:219–227

    CAS  Google Scholar 

  43. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    CAS  PubMed  Google Scholar 

  44. Zhang YP, Zhuo QQ, Lv XX, Ma YY, Zhong J, Sun XH (2015) NiO-Co3O4 nanoplate composite as efficient anode in Li-ion battery. Electrochim Acta 178:590–596

    CAS  Google Scholar 

  45. Wang F, Wang CQ, Chen H, Zhang WL, Jiang RJ, Yan ZH, Huang ZY, Zhou HH, Kuang YF (2019) A composite of Fe3O4@ C and multilevel porous carbon as high-rate and long-life anode materials for lithium ion batteries. Nanotechnology 30:335701

    CAS  PubMed  Google Scholar 

  46. Wei W, Yang SB, Zhou HX, Lieberwirth I, Feng XL, Müllen K (2013) 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25:2909–2914

    CAS  PubMed  Google Scholar 

  47. Behera SK (2011) Enhanced rate performance and cyclic stability of Fe3O4–graphene nanocomposites for Li ion battery anodes. Chem Commun 47:10371–10373

    CAS  Google Scholar 

  48. Li XY, Huang XL, Liu DP, Wang X, Song SY, Zhou L, Zhang HJ (2011) Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J Phys Chem C 115:21567–21573

    CAS  Google Scholar 

  49. Yang YY, Hu ZA, Zhang ZY, Zhang FH, Zhang YJ, Liang PJ, Zhang HY, Wu HY (2012) Reduced graphene oxide–nickel oxide composites with high electrochemical capacitive performance. Mater Chem Phys 133:363–368

    CAS  Google Scholar 

  50. Gong YM, Zhao JC, Wang HX, Xu JL (2018) CuCo2S4/reduced graphene oxide nanocomposites synthesized by one-step solvothermal method as anode materials for sodium ion batteries. Electrochim Acta 92:895–902

    Google Scholar 

  51. Yuan TZ, Jiang YZ, Sun WP, Xiang B, Li Y, Yan M, Xu B, Dou SX (2016) Ever-increasing pseudocapacitance in RGO-MnO-RGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv Funct Mater 26:2198–2206

    CAS  Google Scholar 

  52. Jiao JQ, Qiu WD, Tang JG, Chen LP, Jing LY (2016) Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res 9:1256–1266

    CAS  Google Scholar 

  53. Xiao ZC, Li Y, Liang CL, Liu Y, Bao RY, Yang MB, Yang W (2019) Multi-functional carbon integrated rGO-Fe3O4@ C composites as porous building blocks to construct anode with high cell capacity and high areal capacity for lithium ion batteries. J Electroanal Chem 840:430–438

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 21404068, 51502169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuandong Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1554 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, M., Wu, Y., Qi, Z. et al. Synthesis and electrochemical performance of NiO/Fe3O4/rGO as anode material for lithium ion battery. Ionics 26, 3831–3840 (2020). https://doi.org/10.1007/s11581-020-03545-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03545-1

Keywords

Navigation