Skip to main content

Advertisement

Log in

Sustainable Replacement of Phenol for Synthesis of Phenol-Free Phenolic Resin from Sugar Waste

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Phenolic resins are extensively utilized in various industries, but their production using non-renewable and petroleum-based phenol and formaldehyde raise concerns over cost and adverse effects on human health and the environment. Hence, the development of alternative phenol sources is imperative to achieve sustainable production and promote environmental sustainability in the field of polymer chemistry. This study aims to investigate the feasibility of synthesizing lignin-based phenolic resin, using fractionated acetone-treated lignin extracted from sugar waste, as a substitute for toxic and non-renewable phenols. Specifically, the acetone treatment is used for fractionating lignin to select the optimal components for phenolic resin synthesis. Experimental results indicate that the lignin exhibits improved solubility in a 60% acetone solution, leading to a simplified configuration and enhanced bonding mode. The resulting phenolic resin synthesized using lignin as a phenol source demonstrates superior bonding strength (1.57 MPa) compared to industrial phenolic resins (1.14 MPa). Furthermore, the resin exhibits a negligible amount of released free phenols (0.05%), which significantly mitigates environmental concerns. To conclude, this study presents a novel approach to develop a lignin-based phenolic resin using sugar byproduct as a feasible substitute for phenols, addressing the limitations associated with their production. These findings offer promising prospects for sustainable production practices in polymer chemistry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Spiridon I (2020) Extraction of lignin and therapeutic applications of lignin-derived compounds. A review. Environ Chem Lett 18:771–785

    Article  CAS  Google Scholar 

  2. Nguyen LT, Phan DP, Sarwar A, Tran MH, Lee OK, Lee EY (2021) Valorization of industrial lignin to value-added chemicals by chemical depolymerization and biological conversion. Ind Crops Prod 161:113219

    Article  CAS  Google Scholar 

  3. Pang TR, Wang GH, Ge J, Wei N, Sui WJ, Parvez AM, Si CL (2021) Novel surfactant-assisted hydrothermal fabrication of a lignin microsphere as a green reducer and carrier for Pd nanoparticles. ACS Sustain Chem Eng 9:17085–17095

    Article  CAS  Google Scholar 

  4. Xu R, Du HS, Liu C, Liu HY, Wu MY, Zhang XY, Si CL, Li B (2021) An efficient and magnetic adsorbent prepared in a dry process with enzymatic hydrolysis residues for wastewater treatment. J Clean Prod 313:127834

    Article  CAS  Google Scholar 

  5. Liu K, Du HS, Zheng T, Liu W, Zhang M, Liu HY, Zhang XY, Si CL (2021) Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem 23:9723–9746

    Article  CAS  Google Scholar 

  6. Liu WS, Zhou R, Goh HLS, Huang S, Lu XH (2014) From waste to functional additive: toughening epoxy resin with lignin. ACS Appl Mater Interfaces 6:5810–5817

    Article  CAS  PubMed  Google Scholar 

  7. Sun N, Wang Z, Ma X, Zhang K, Wang Z, Guo Z, Chen Y, Sun L, Lu W, Liu Y, Di M (2021) Preparation and characterization of lignin-containing self-healing polyurethane elastomers with hydrogen and disulfide bonds. Ind Crops Prod 174:114178

    Article  CAS  Google Scholar 

  8. Kun D, Pukanszky B (2017) Polymer/lignin blends: interactions, properties, applications. Eur Polym 93:618–641

    Article  CAS  Google Scholar 

  9. Zhao YX, Xu R, Xiao Y, Wang HL, Zhang W, Zhang GY (2022) Mechanical performances of phenolic modified epoxy resins at room and high temperatures. Coatings 12:643

    Article  CAS  Google Scholar 

  10. Shadnia H, Wright JS (2008) Understanding the toxicity of phenols: using quantitative structure–activity relationship and enthalpy changes to discriminate between possible mechanisms. Chem Res Toxicol 21:1197–1204

    Article  CAS  PubMed  Google Scholar 

  11. Xu C, Ferdosian F (2017) Lignin-based phenol–formaldehyde (LPF) resins/adhesives. Springer, Berlin

    Book  Google Scholar 

  12. Liu Q, Xu Y, Kong F, Ren H, Zhai H (2022) Synthesis of phenolic resins by substituting phenol with modified spruce kraft lignin. Wood Sci Technol 56:1527–1549

    Article  CAS  Google Scholar 

  13. Sen S, Patil S, Argyropoulos DS (2015) Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem 17:4862–4887

    Article  CAS  Google Scholar 

  14. Laurichesse S, Averous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290

    Article  CAS  Google Scholar 

  15. Wang NN, Zhang CL, Zhu WQ, Weng YX (2020) Improving interfacial adhesion of PLA/lignin composites by one-step solvent-free modification method. J Renew Mater 8:1139–1149

    Article  CAS  Google Scholar 

  16. Liu HY, Chen FQ, Guo RB, Zhang GZ, Qu JP (2015) Effect of compatibilizer on the properties of PBS/lignin composites prepared via a vane extruder. J Polym Eng 35:829–837

    Article  CAS  Google Scholar 

  17. Gong Z, Yang G, Huang L, Chen L, Luo X, Shuai L (2023) Phenol-assisted depolymerisation of condensed lignins to mono-/poly-phenols and bisphenols. Chem Eng J 455:140628

    Article  CAS  Google Scholar 

  18. Saito T, Perkins JH, Vautard F, Meyer HM, Messman JM, Tolnai B, Naskar AK (2014) Methanol fractionation of softwood kraft lignin: impact on the lignin properties. Chemsuschem 7:221–228

    Article  CAS  PubMed  Google Scholar 

  19. Li CX, An XY, Ren Q, Liu LQ, Long YY, Zhang H, Yang J, Nie SX, Tian ZJ, Yang GH, Cheng ZB, Cao HB, Liu HB (2023) Nanogrinding/ethanol activation facilitating lignin fractionation for preparation of monodispersed lignin nanoparticles. Int J Biol Macromol 227:608–618

    Article  CAS  PubMed  Google Scholar 

  20. Dominguez-Robles J, Tamminen T, Liitia T, Peresin MS, Rodriguez A, Jaaskelainen AS (2018) Aqueous acetone fractionation of kraft, organosolv and soda lignins. Int J Biol Macromol 106:979–987

    Article  CAS  PubMed  Google Scholar 

  21. Li SY, Li ZQ, Zhang YD, Liu C, Yu G, Li B, Mu XD, Peng H (2017) Preparation of concrete water reducer via fractionation and modification of lignin extracted from pine wood by formic acid. ACS Sustain Chem Eng 5:4214–4222

    Article  CAS  Google Scholar 

  22. Gigli M, Crestini C (2020) Fractionation of industrial lignins: opportunities and challenges. Green Chem 22:4722–4746

    Article  CAS  Google Scholar 

  23. Sadeghifar H, Ragauskas A (2020) Perspective on technical lignin fractionation. ACS Sustain Chem Eng 8:8086–8101

    Article  CAS  Google Scholar 

  24. Sun RC, Tomkinson J (2002) Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason Sonochem 9:85–93

    Article  CAS  PubMed  Google Scholar 

  25. Gao C, Li M, Zhu C, Hu Y, Shen T, Li M, Ji X, Lyu G, Zhuang W (2021) One-pot depolymerization, demethylation and phenolation of lignin catalyzed by HBr under microwave irradiation for phenolic foam preparation. Composites B 205:108530

    Article  CAS  Google Scholar 

  26. Di B, Li Z, Lei Y, Wang X, Zhu Y, Qi W, Tian Y (2021) Phenol-enriched hydroxy depolymerized lignin by microwave alkali catalysis to prepare high-adhesive biomass composites. Polym Eng Sci 61:1463–1475

    Article  CAS  Google Scholar 

  27. Zhao S, Xu W, Di B, Fan Z, Liu X, Tian Y, Zhou B (2023) Using phenol-enriched hydroxy lignin obtained by low-cost catalysts to synthesize industrial adhesive. J Polym Environ 31:4691–4702

    Article  CAS  Google Scholar 

  28. Sadeghifar H, Wells T, Le RK, Sadeghifar F, Yuan JS, Jonas Ragauskas A (2017) Fractionation of organosolv lignin using acetone:water and properties of the obtained fractions. ACS Sustain Chem Eng 5:580–587

    Article  CAS  Google Scholar 

  29. Zhao G, Ni H, Jia L, Ren S, Fang G (2018) Quantitative analysis of relationship between Hansen solubility parameters and properties of alkali lignin/acrylonitrile–butadiene–styrene blends. ACS Omega 3:9722–9728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sameni J, Krigstin S, Sain M (2017) Solubility of lignin and acetylated lignin in organic solvents. BioResources 12:1548–1565

    Article  CAS  Google Scholar 

  31. Abbott S (2020) Solubility, similarity, and compatibility: a general-purpose theory for the formulator. Curr Opin Colloid Interface Sci 48:65–76

    Article  CAS  Google Scholar 

  32. Sun RC (2020) Lignin source and structural characterization. Chemsuschem 13:4385–4393

    Article  CAS  PubMed  Google Scholar 

  33. Wen JL, Sun SL, Xue BL, Sun RC (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6:359–391

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wen JL, Xue BL, Sun SL, Sun RC (2013) Quantitative structural characterization and thermal properties of birch lignins after auto-catalyzed organosolv pretreatment and enzymatic hydrolysis. J Chem Technol Biotechnol 88:1663–1671

    Article  CAS  Google Scholar 

  35. Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci USA 109:10101–10106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hatfield R, Vermerris W (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126:1351–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li J, Zhang J, Zhang S, Gao Q, Li J, Zhang W (2018) Alkali lignin depolymerization under eco-friendly and cost-effective NaOH/urea aqueous solution for fast curing bio-based phenolic resin. Ind Crops Prod 120:25–33

    Article  CAS  Google Scholar 

  38. Faix O (1986) Investigation of lignin polymer models (DHP’s) by FTIR spectroscopy. Holzforschung 40:273–280

    Article  CAS  Google Scholar 

  39. Andrianova AA, DiProspero T, Geib C, Smoliakova IP, Kozliak EI, Kubátová A (2018) Electrospray ionization with high-resolution mass spectrometry as a tool for lignomics: lignin mass spectrum deconvolution. J Am Soc Mass Spectrom 29:1044–1059

    Article  CAS  PubMed  Google Scholar 

  40. Qi Y, Volmer DA (2019) Rapid mass spectral fingerprinting of complex mixtures of decomposed lignin: data-processing methods for high-resolution full-scan mass spectra. Rapid Commun Mass Spectrom 33:2–10

    Article  CAS  PubMed  Google Scholar 

  41. Adams J (2011) Analysis of printing and writing papers by using direct analysis in real time mass spectrometry. J Mass Spectrom 301:109–126

    Article  CAS  Google Scholar 

  42. Sismanoglu S, Yildirim-Bilmez Z, Gurcan AT, Gumustas B, Taysi M, Berkman M (2022) Influence of intracoronal bleaching agents on the bond strength of MTA cements to composite resin and their surface morphology. Odontology 110:148–156

    Article  CAS  PubMed  Google Scholar 

  43. Chen S, Xin Y, Zhao C (2021) Multispectroscopic analysis in the synthesis of lignin-based biophenolic resins. ACS Sustain Chem Eng 9:15653–15660

    Article  CAS  Google Scholar 

  44. Pienihäkkinen E, Stamatopoulos I, Krassa P, Svensson I, Ohra-aho T, Lindfors C, Oasmaa A (2023) Production of pyrolytic lignin for the phenolic resin synthesis via fast pyrolysis. J Anal Appl Pyrolysis 176:106239

    Article  Google Scholar 

  45. Zheng F, Ren Z, Xu B, Wan K, Cai J, Yang J, Zhang T, Wang P, Niu B, Zhang Y, Long D (2021) Elucidating multiple-scale reaction behaviors of phenolic resin pyrolysis via TG-FTIR and ReaxFF molecular dynamics simulations. J Anal Appl Pyrolysis 157:105222

    Article  CAS  Google Scholar 

  46. Hu H, Zhang Y, Liu L, Yang Y, Yu R, Wang J (2021) Effect of quantitative characteristic structure of resole phenolic prepolymer resin on thermal stability, pyrolysis behaviors, and ablation properties. J Therm Anal Calorim 146:1049–1062

    Article  CAS  Google Scholar 

  47. Shen DK, Gu S, Luo KH, Wang SR, Fang MX (2010) The pyrolytic degradation of wood-derived lignin from pulping process. BioResources 101:6136–6146

    Article  CAS  Google Scholar 

  48. Monteil-Rivera F, Phuong M, Ye M, Halasz A, Hawari J (2013) Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind Crops Prod 41:356–364

    Article  CAS  Google Scholar 

  49. Elder T, Beste A (2014) Density functional theory study of the concerted pyrolysis mechanism for lignin models. Energy Fuels 28:5229–5235

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Mingsheng Diatom New Materials Co., Ltd., China.

Author information

Authors and Affiliations

Authors

Contributions

ZF: Conceptualization, Methodology, Data curation, Investigation, Writing—original draft preparation. WX: Investigation and Project administration. YT: Supervision, Funding acquisition, Writing—review and editing. XY and RN: Validation, Formal analysis, Writing—review and editing.

Corresponding author

Correspondence to Yumei Tian.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Xu, W., Tian, Y. et al. Sustainable Replacement of Phenol for Synthesis of Phenol-Free Phenolic Resin from Sugar Waste. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03158-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03158-5

Keywords

Navigation