Skip to main content

Advertisement

Log in

Synthesis of Biobased Furan Polyamides with Excellent Mechanical Properties: Effect of Diamine Chain Length

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Furan semi-aromatic polyamides have become a biobased substitute for existing petrochemical semi-aromatic polyamides and received more and more attention. In this study, a series of high-performance biobased furan polyamides with different diamine chain lengths (Poly(butylene furanamide) (PA4F), Poly(pentylene furanamide) (PA5F), Poly(hexamethylene furanamide) (PA6F), Poly(octamethylene furanamide) (PA8F) and Poly(dodecamethylene furanamide) (PA12F)) were successfully prepared; Except for PA4F, other resins could be synthesized by one step bulk polymerization. Meanwhile, the effect of diamine chain length was studied. Except for PA4F they were amorphous which was confirmed by IR, XRD and DSC analysis. PA12F to PA5F had high weight-average molecular weights (Mw) ranging from 34,000 to 65,500 g/mol, number-average molecular weight (Mn) ranging from 6100 to 26,300 g/mol, glass transition temperature (Tg) ranging from 89 to 138 ℃ and temperature of decomposition at 5% mass loss (Td-5%) from 357 to 408 ℃. The Tg of PA4F reached as high as 142 ℃. The tensile strength of PA12F, PA8F and PA5F was obtained for the first time, and reached up to 45, 62 and 84 MPa, respectively. The tensile strength of PA6F was also high at 74 MPa. The α relaxation temperatures of PA12F to PA5F were also high, up to 107, 136, 146 and 158 ℃, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.C. Michael Carus nova-Institut GmbH, Germany, Renewable Carbon is the key to a sustainable and future-oriented chemical and plastic industry, bioplastics MAGAZINE 15

  2. Kyulavska M, Toncheva-Moncheva N, Rydz J (2019) Biobased polyamide ecomaterials and their susceptibility to biodegradation. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_126

    Google Scholar 

  3. van Es DS, Blocks RBB (2013) Rigid biobased building blocks. J Renew Mater 1(1):61–72

    Article  Google Scholar 

  4. Huang PQ, Zheng X, Deng XM (2001) DIBAL–H–H2NR and DIBAL–H–HNR1 R2 ·HCl complexes for efficient conversion of lactones and esters to amides. Tetrahedron Lett 42:9039–9041

    Article  CAS  Google Scholar 

  5. M. Carus, Renewable Carbon Strategy, bioplastics MAGAZINE 15

  6. Report of the Conference of the Parties on its fifteenth session, held in Copenhagen from 7 to 19 December (2009)

  7. E. Staff, (2018) The Chemical Industry Says Goodbye to Fossil Fuels, renewablematter 25

  8. Berlinck RG, Burtoloso AC, Kossuga MH (2008) The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 25(5):919–954

    Article  CAS  PubMed  Google Scholar 

  9. Stockmann PN, Van Opdenbosch D, Poethig A, Pastoetter DL, Hoehenberger M, Lessig S, Raab J, Woelbing M, Falcke C, Winnacker M, Zollfrank C, Strittmatter H, Sieber V (2020) Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis. Nat Commun 11(1):509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pagacz J, Raftopoulos KN, Leszczyńska A, Pielichowski K (2015) Bio-polyamides based on renewable raw materials. J Therm Anal Calorim 123(2):1225–1237

    Article  Google Scholar 

  11. Endo T, Higashihara T (2022) Direct synthesis of thermally stable semiaromatic polyamides by bulk polymerization using aromatic diamines and aliphatic dicarboxylic acids. ACS Omega 7(10):8753–8758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stavila E, Arsyi RZ, Petrovic DM, Loos K (2013) Fusarium solani pisi cutinase-catalyzed synthesis of polyamides. Eur Polymer J 49(4):834–842

    Article  CAS  Google Scholar 

  13. Stavila E, Alberda van Ekenstein GOR, Loos K (2013) Enzyme-catalyzed synthesis of aliphatic-aromatic oligoamides. Biomacromol 14(5):1600–1606

    Article  CAS  Google Scholar 

  14. Feng W, Wang P, Zou G, Ren Z, Ji J (2018) Synthesis and characterization of semiaromatic copolyamide 10T/1014 with high performance and flexibility. Des Monomers Polym 21(1):33–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feng W, Zou G, Ding Y, Ai T, Wang P, Ren Z, Ji J (2019) Effect of aliphatic diacid chain length on properties of semiaromatic copolyamides based on PA10T and their theoretical study. Ind Eng Chem Res 58(17):7217–7226

    Article  CAS  Google Scholar 

  16. Zhang G, Yang HW, Zhang SX, Zhang Y, Wang XJ, Yang J (2012) Facile synthesis of processable semi-aromatic polyamide containing thioether units. J Macromol Sci Part A 49(5):414–423

    Article  CAS  Google Scholar 

  17. Villa A, Schiavoni M, Campisi S, Veith GM, Prati L (2013) Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid. Chemsuschem 6(4):609–612

    Article  CAS  PubMed  Google Scholar 

  18. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13(4):754–793

    Article  CAS  Google Scholar 

  19. E. de Jong, M.A. Dam, L. Sipos, G.J.M. Gruter, (2012) Furandicarboxylic Acid (FDCA), A Versatile Building Block for a Very Interesting Class of Polyesters, American Chemical Society 1-13

  20. Mao L, Pan L, Ma B, He Y (2021) Synthesis and characterization of bio-based amorphous polyamide from dimethyl furan-2,5-dicarboxylate. J Polym Environ 30(3):1072–1079

    Article  Google Scholar 

  21. Jiang Y, Maniar D, Woortman AJ, Alberda van Ekenstein GO, Loos K (2015) Enzymatic polymerization of Furan-2,5-dicarboxylic acid-based furanic-aliphatic polyamides as sustainable alternatives to polyphthalamides. Biomacromol 16(11):3674–3685

    Article  CAS  Google Scholar 

  22. Könst PM, Franssen MCR, Scott EL, Sanders JPM (2011) Stabilization and immobilization of Trypanosoma brucei ornithine decarboxylase for the biobased production of 1,4-diaminobutane. Green Chem 13(5):1167–1174

    Article  Google Scholar 

  23. Zhang Y, Wang Y, Xu Y, Liu X, Guo W (2021) Modification of biobased polyamide 56 to achieve ultra-toughening. Polym-Plast Technol Mater. https://doi.org/10.1080/25740881.2021.1924198

    Article  Google Scholar 

  24. Funk I, Rimmel N, Schorsch C, Sieber V, Schmid J (2017) Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis. J Ind Microbiol Biotechnol 44(10):1491–1502

    Article  CAS  PubMed  Google Scholar 

  25. Folahan FTP, Ayorlnde O, Streete Ludwig D, Shepard Robert L, Tabi Dorothy N (1989) Synthesis of dodecanedioic acid from vernonia galamensis Oil. J Americ Oil Chem Soc 66:690–692

    Article  Google Scholar 

  26. Yang JC, Xie S, Wang XJ, Yang J (2022) Synthesis of fully biobased semi-aromatic furan polyamides with high performance through facile green synthesis process. Eur Polymer J 162:110932

    Article  Google Scholar 

  27. Kamran M, Davidson Matthew G, de Vos Sicco, Tsanaktsis V, Yeniadc B (2022) Synthesis and characterisation of polyamides based on 2,5-furandicarboxylic acid as a sustainable building block for engineering plastics. Polym Chem 13:3433–3443

    Article  CAS  Google Scholar 

  28. Ate Duursma, Dee DeeSmith, Joel Flores, (2016) Process for preparingafuran-based polyamide,afuran-based oligomerandcompositions and articlescomprising the furan-basedpolyamIDE, US 2016/0237211 A1

  29. Fehrenbacher U, Grosshardt O, Kowollik K, Tübke B, Dingenouts N, Wilhelm M (2009) Synthese und Charakterisierung von polyestern und polyamiden auf der basis von furan-2,5-dicarbonsäure. Chem Ing Tech 81(11):1829–1835

    Article  CAS  Google Scholar 

  30. Jiang Y, Maniar D, Woortman AJJ, Alberda van Ekenstein GOR, Loos K (2015) Enzymatic polymerization of Furan-2,5-dicarboxylic acid-based furanic aliphatic polyamides as sustainable alternatives to polyphthalamides. Biomacromolecules. https://doi.org/10.1021/acs.biomac.5b01172

    Article  PubMed  Google Scholar 

  31. Jiang Y, Maniar D, Woortman AJJ, Loos K (2016) Enzymatic synthesis of 2,5-furandicarboxylic acid-based semi-aromatic polyamides: enzymatic polymerization kinetics, effect of diamine chain length and thermal properties. RSC Adv 6(72):67941–67953

    Article  CAS  Google Scholar 

  32. Woroch CP, Cox IW, Kanan MW (2023) A semicrystalline furanic polyamide made from renewable feedstocks. J Am Chem Soc 145:697–705

    Article  CAS  PubMed  Google Scholar 

  33. S. Xie, J. Yang, M.L. Zhang, Z.M. Wei, X.J. Wang, (2021) Method for preparing high molfcular weight furan polyamide, State Intellectual Property Office of the People's Republic of China

  34. J.M. Lecuyer, (2010) Organocatalytic decomposition of poly(ethylene terephthalate) using triazabicyclodecene proposal, San Jose State University

  35. Chuma A, Swope WC, Pratt RC, Zhang L, Lohmeijer BGG, Wade CG, Waymouth RM, Hedrick JL, Rice JE (2008) The reaction mechanism for the organocatalytic ring-opening polymerization of L-Lactide using a guanidine-based catalyst: hydrogen-bonded or covalently bound? J Am Chem Soc 130:6749–6754

    Article  CAS  PubMed  Google Scholar 

  36. Goodman JM (2007) The mechanism of TBD-catalyzed ring-opening polymerization of cyclic esters. J Org Chem 72:9656–9662

    Article  PubMed  Google Scholar 

  37. Kiesewetter MK, Scholten MD, Kirn N, Weber RL, Hedrick JL, Waymouth RM (2009) Cyclic guanidine organic catalysts: what is magic about triazabicyclodecene? J Org Chem 74(24):9490–9496

    Article  CAS  PubMed  Google Scholar 

  38. Ahmadi R, Ullah A (2020) Synthesis and characterization of unsaturated biobased-polyamides from plant oil. ACS Sustain Chem Eng 8(21):8049–8058

    Article  CAS  Google Scholar 

  39. Schuchardt U, Gelbard G (1995) Alkylguanidines as catalysts for the transesterification of rapeseed oil. J Mol Catal A: Chem 99:65–70

    Article  CAS  Google Scholar 

  40. Ye WP, Xu JY, Tan CT, Tan CH (2005) 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) catalyzed Michael reactions. Tetrahedron Lett 46(40):6875–6878

    Article  CAS  Google Scholar 

  41. Shen T, Zhang B, Wang YY, Yang PP, Li M, Hu RJ, Guo K, Chen KQ, Zhu N, Wang L, Zhu CJ, Ying HJ (2022) Production of 100% bio-based semi-aromatic nylon by aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with bio aliphatic diamine. Chem Eng J 437:135361

    Article  CAS  Google Scholar 

  42. Cousin T, Galy J, Rousseau A, Dupuy J (2017) Synthesis and properties of polyamides from 2,5-furandicarboxylic acid. J Appl Polym Sci. https://doi.org/10.1002/app.45901

    Article  Google Scholar 

  43. Jenkins RW, Sargeant LA, Whiffin FM, Santomauro F, Kaloudis D, Mozzanega P, Bannister CD, Baena S, Chuck CJ (2015) Cross-metathesis of microbial oils for the production of advanced biofuels and chemicals. ACS Sustain Chem Eng 3(7):1526–1535

    Article  CAS  Google Scholar 

  44. Guillena G, Yus M (2010) Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chem Rev 110:1611–1641

    Article  CAS  PubMed  Google Scholar 

  45. Wilsens CHRM, Deshmukh YS, Noordover BAJ, Rastogi S (2014) Influence of the 2,5-furandicarboxamide moiety on hydrogen bonding in aliphatic-aromatic poly(ester amide)s. Macromolecules 47(18):6196–6206

    Article  CAS  Google Scholar 

  46. Coleman MM, Lee KH, Skrovanek DJ, Painter PC (1986) Painter, Hydrogen bonding in polymers 4 Infrared temperature studies of a simple polyurethane. Macromolecules 19(8):2149–2157

    Article  CAS  Google Scholar 

  47. Yeh I-C, Rinderspacher BC, Andzelm JW, Cureton LT, La Scala J (2014) Computational study of thermal and mechanical properties of nylons and bio-based furan polyamides. Polymer 55(1):166–174

    Article  CAS  Google Scholar 

  48. More AS, Pasale SK, Wadgaonkar PP (2010) Synthesis and characterization of polyamides containing pendant pentadecyl chains. Eur Polymer J 46(3):557–567

    Article  CAS  Google Scholar 

  49. da Fontoura CM, Pistor V, Mauler RS (2019) Evaluation of degradation of furanic polyamides synthesized with different solvents. Polímeros 29(2):1–6

    Article  Google Scholar 

  50. Kamran M, Davidson MG, Tsanaktsis V, van Berkel S, de Vos S (2022) Structure-property insights of semi-aromatic polyamides based on renewable furanic monomer and aliphatic diamines. Eur Polym J 178:1–11

    Article  Google Scholar 

  51. Liu M, Li K, Yang S, Fu P, Wang Y, Zhao Q (2011) Synthesis and thermal decomposition of poly(dodecamethylene terephthalamide). J Appl Polym Sci 122(5):3369–3376

    Article  CAS  Google Scholar 

  52. Wang Z, Tong X, Yang JC, Wang XJ, Zhang ML, Zhang G, Long SR, Yang J (2019) Improved strength and toughness of semi-aromatic polyamide 6T-co-6(PA6T/6)/GO composites via in situ polymerization. Compos Sci Technol 175:6–17

    Article  CAS  Google Scholar 

  53. Yang KJ, Liu YL, Zheng ZK, Lu GM, Tang ZB, Chen XD (2022) Synthesis and thermal degradation mechanism of a semi-aromatic copolyamide from renewable sources. Polym Degrad Stab 203:1–10

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Jiangsu Provincial Key Research and Development Program (Grant No. BE2019008) and the Natural Science Foundation of China (Grant No. 21274094 and 21304060).

Funding

The Jiangsu Provincial Key Research and Development Program, BE2019008, the Natural Science Foundation of China, 21274094 and 21304060.

Author information

Authors and Affiliations

Authors

Contributions

Shuang Xie mainly completed this work, including conception, experiment and characterization test. Jie Yang, Xiaojun Wang and Zhimei Wei participated in conception of this work. Dawei Yu and Jiahong Yao assisted in characterization test.

Corresponding authors

Correspondence to Xiaojun Wang or Jie Yang.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest to this work. And we declare that do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Yu, D., Yao, J. et al. Synthesis of Biobased Furan Polyamides with Excellent Mechanical Properties: Effect of Diamine Chain Length. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03154-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03154-9

Keywords

Navigation