Skip to main content
Log in

Advanced Aramid Fibrous Materials: Fundamentals, Advances, and Beyond

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Aramid fibers (AFs) are widely applied in many cutting-edge fields, due to their excellent comprehensive performance. Ongoing research efforts are therefore underway to expand the applicability by designing more environmentally friendly and low-cost synthesis methods, incorporating new chemical components in the skeletons or internal structures of polyamide to enhance their processability and functionality. Despite being at the forefront of scientific research, there are fewer reviews that comprehensively summarize the latest progress of AFs. This review focuses on the fundamental research of AFs since their inception and summarizes the advanced progress and applications of AFs. Firstly, the synthesis mechanism and methods of AFs and their structure–property relationship are comprehensively discussed. Subsequently, we review the recent progress in surface functionalization of AFs by using advanced micro-nanoscale modification strategies to enhance the interface properties and ultraviolet (UV)-resistance properties, and summarize the advantages and disadvantages of various modified methods. Then, applications of AF and aramid nanofiber (ANF) in various fields are discussed. Finally, the possible challenges and outlooks toward the future development of AFs are highlighted, which is expected to provide new insights for the next-generation advanced functional AF materials and facilitate the industrialization development level for high-performance AFs and their composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from John Wiley & Sons, Inc. b Direct polymerization of aromatic polyamide by Para-phenylenediamine and TPA in SO3. [47], Copyright 1979. Reproduced with permission from John Wiley & Sons, Inc. c Direct polymerization of aromatic polyamide by aromatic dicarboxylic acids and aromatic diamines containing ether linkages. [48], Copyright 2008. Reproduced with permission from the Society of Polymer Science, Japan. d Synthesis mechanism of aromatic polyamide with palladium catalyst.[49], Copyright 1993. Reproduced with permission from American Chemical Society. e Diagram and product pictures and mechanism of PPTA generated in ionic liquids.[50], Copyright 2018. Reproduced with permission from American Chemical Society. f Schematic diagram of the non-aqueous suspension polycondensation process for aromatic polyamide. [51], Copyright 2015. Reproduced with permission from Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg. g Synthesis of PPTA in a micro-channel reactor and the structure diagram of the micro-sieve mixer of the reactor. [52], Copyright 2015. Reproduced with permission from Royal Society of Chemistry

Fig. 4

Reproduced with permission from John Wiley & Sons, Inc. [74], Copyright 1983. Reproduced with permission from John Wiley & Sons, Inc. [78], Copyright 1983. Reproduced with permission from John Wiley & Sons, Inc. [79], Copyright 1973. Reproduced with permission from John Wiley & Sons, Inc. Photograph (f) and unit cell structure (g) [80] of PMIA fibers. [80], Copyright 2017. Reproduced with permission from China Railway Publishing House. h Stress–strain curves of several industrial fibers. [80], Copyright 2017. Reproduced with permission from China Railway Publishing House. i Specific modulus and specific strength of several high-performance fibers. [80], Copyright 2017. Reproduced with permission from China Railway Publishing House. j Limiting oxygen index of several high-performance fibers. [81], Copyright 2018. Reproduced with permission from National Defense Industry Press. k Tensile strength of Kevlar 49 under only atomic oxygen exposure and simultaneous exposures of atomic oxygen and UV radiation. [82], Copyright 2006. Reproduced with permission from Elsevier Ltd

Fig. 5

Reproduced with permission from Elsevier Ltd. b Graphene oxide-modified Kevlar K-29 for reinforcing epoxy resin matrixes. [161], Copyright 2021. Reproduced with permission from American Chemical Society. c Chemical grafting of PBIA fibers with silane coupling agents to enhance the interfacial interaction with rubber, bismaleimide, and epoxy resin. [162], Copyright 2018. Reproduced with permission from Elsevier Ltd. d Constructing a new skin for AFs to improve its composite interfacial properties. [163], Copyright 2021. Reproduced with permission from Elsevier Ltd

Fig. 6

Reproduced with permission from Elsevier Ltd. b Synthesis of TiO2 NPs on Kevlar-49 with the hydrothermal method to enhance the UV resistance. [175], Copyright 2016. Reproduced with permission from Elsevier Ltd. c Chemical Grafting of Kevlar-49 with PDA@tBN@CeO2 to enhance the UV resistance. [240], Copyright 2018. Reproduced with permission from Elsevier Ltd. d Synthesis of TiO2 film by ALD on PMIA fibers to enhance the UV resistance. [241], Copyright 2022. Reproduced with permission from Elsevier Ltd. e Synthesis of -Al2O3–TiO2 bilayer films by ALD on PMIA fibers to enhance the UV resistance. [242], Copyright 2021. Reproduced with permission from John Wiley & Sons Inc

Fig. 7
Fig. 8

Reproduced with permission from Elsevier Ltd. b Anti-UV radiation textiles. [263], Copyright 2019. Reproduced with permission from John Wiley & Sons Inc. c Schematic illustration for preparation of paper-based thermally conductive materials. [264], Copyright 2018. Reproduced with permission from Springer Science Business Media. d Laser writing of Janus graphene/Kevlar textile for intelligent protective clothing. [265], Copyright 2020. Reproduced with permission from American Chemical Society. e m-AF paper for EMI shielding in the extreme environments. [266], Copyright 2020. Reproduced with permission from Elsevier Ltd. f Electrothermal/Photothermal conversion aramid spun-laced nonwoven fabric. [267], Copyright 2021. Reproduced with permission from Elsevier Ltd

Fig. 9

Reproduced with permission from Elsevier Ltd. b Robust and flexible ANF/graphene LBL electrodes. [305], Copyright 2020. Reproduced with permission from Elsevier Ltd. c Aramid-nanofibers-based flexible sensor. [326], Copyright 2021. Reproduced with permission from Elsevier Ltd. d Z-PMIA separator of the Li–S batteries. [327], Copyright 2021. Reproduced with permission from Elsevier Ltd. e High flux organic solvent nanofiltration membrane from Kevlar ANFs. [328], Copyright 2018. Reproduced with permission from Royal Society of Chemistry. f MXene/ ANFs for EMI shielding paper. [329], Copyright 2022. Reproduced with permission from American Chemical Society

Similar content being viewed by others

Data availability

This manuscript is a review, all the data was obtained from the references and the copyrights of all the figures have been permissed.

References

  1. Amesimeku J, Song WH, Wang CX. Fabrication of electrically conductive and improved UV-resistant aramid fabric via bio-inspired polydopamine and graphene oxide coating. J Text Inst. 2019;110:1484.

    Article  CAS  Google Scholar 

  2. Wang HX, Xie HM, Hu ZX, Wu D, Chen PW. The influence of UV radiation and moisture on the mechanical properties and micro-structure of single Kevlar fibre using optical methods. Polym Degrad Stabil. 2012;97:1755.

    Article  CAS  Google Scholar 

  3. Wang F, Wu YD, Huang YD, Liu L. Strong, transparent, and flexible aramid nanofiber/POSS hybrid organic/inorganic nanocomposite membranes. Compos Sci Technol. 2018;156:269.

    Article  CAS  Google Scholar 

  4. Lv M, Zheng F, Wang QH, Wang TM, Liang YM. Friction and wear behaviors of carbon and aramid fibers reinforced polyimide composites in simulated space environment. Tribol Int. 2015;92:246.

    Article  CAS  Google Scholar 

  5. García JM, García FC, Serna F, de la Peña JL. High-performance aromatic polyamides. Prog Polym Sci. 2010;35:623.

    Article  Google Scholar 

  6. Russo S, Boulares A, Da Rin A, Mariani A, Cosulich ME. Hyperbranched aramids by direct polyamidation of two reactant systems: synthesis and properties. Macromol Symp. 1999;143:309.

    Article  CAS  Google Scholar 

  7. Tabuani D, Monticelli O, Komber H, Russo S. Preparation and characterisation of Pd nanoclusters in hyperbranched aramid templates to be used in homogeneous catalysis. Macromol Chem Phys. 2003;204:1576.

    Article  CAS  Google Scholar 

  8. Ertekin M. 7 - Aramid fibers. In: Seydibeyoğlu MÖ, Mohanty AK, Misra M, editors. Fiber technology for fiber-reinforced composites. Woodhead Publishing; 2017. p. 153–67.

    Chapter  Google Scholar 

  9. Yang HM. Aramid fibers. In: Kelly A, Zweben C, editors. Comprehensive composite materials. Elsevier; 2000. p. 199–229.

    Chapter  Google Scholar 

  10. Aramids RS. In: Hearle JWS, editor. High-performance fibres. Cambridge: Woodhead Publishing Ltd; 2001. p. 23–61.

    Google Scholar 

  11. Mukherjee M, Das CK, Kharitonov AP, Banik K, Mennig G, Chung TN. Properties of syndiotactic polystyrene composites with surface modified short Kevlar fiber. Mater Sci Eng A. 2006;441:206.

    Article  Google Scholar 

  12. Yuan H, Wang WC, Yang DZ, Zhou XF, Zhao ZL, Zhang L, Wang S, Feng J. Hydrophilicity modification of aramid fiber using a linear shape plasma excited by nanosecond pulse. Surf Coat Technol. 2018;344:614.

    Article  CAS  Google Scholar 

  13. Nasser J, Lin JJ, Steinke K, Sodano HA. Enhanced interfacial strength of aramid fiber reinforced composites through adsorbed aramid nanofiber coatings. Compos Sci Technol. 2019;174:125.

    Article  CAS  Google Scholar 

  14. Li K, Li L, Qin JQ, Liu XY. A facile method to enhance UV stability of PBIA fibers with intense fluorescence emission by forming complex with hydrogen chloride on the fibers surface. Polym Degrad Stabil. 2016;128:278.

    Article  CAS  Google Scholar 

  15. Zhao YS, Dang WB, Lu ZQ, Deng JB, Hao Y, Su ZP, Zhang MY. Fabrication of mechanically robust and UV-resistant aramid fiber-based composite paper by adding nano-TiO2 and nanofibrillated cellulose. Cellulose. 2018;25:3913.

    Article  CAS  Google Scholar 

  16. Wu SR, Sheu GS, Shyu SS. Kevlar fiber–epoxy adhesion and its effect on composite mechanical and fracture properties by plasma and chemical treatment. J Appl Polym Sci. 1996;62:1347.

    Article  CAS  Google Scholar 

  17. Ehlert GJ, Lin YR, Sodano HA. Carboxyl functionalization of carbon fibers through a grafting reaction that preserves fiber tensile strength. Carbon. 2011;49:4246.

    Article  CAS  Google Scholar 

  18. Sheu GS, Shyu SS. Surface properties and interfacial adhesion studies of aramid fibres modified by gas plasmas. Compos Sci Technol. 1994;52:489.

    Article  CAS  Google Scholar 

  19. Xi M, Li Y-L, Shang S-Y, Li D-H, Yin Y-X, Dai X-Y. Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing. Surf Coat Technol. 2008;202:6029.

    Article  CAS  Google Scholar 

  20. Zhao X, Hirogaki K, Tabata I, Okubayashi S, Hori T. A new method of producing conductive aramid fibers using supercritical carbon dioxide. Surf Coat Technol. 2006;201:628.

    Article  CAS  Google Scholar 

  21. Lin GY, Wang H, Yu BQ, Qu GK, Chen SW, Kuang TR, Yu KB, Liang ZN. Combined treatments of fiber surface etching/silane-coupling for enhanced mechanical strength of aramid fiber-reinforced rubber blends. Mater Chem Phys. 2020;255: 123486.

    Article  CAS  Google Scholar 

  22. Zuo LS, Li K, Ren DX, Xu MZ, Tong LF, Liu XB. Surface modification of aramid fiber by crystalline polyarylene ether nitrile sizing for improving interfacial adhesion with polyarylene ether nitrile. Compos Part B. 2021;217: 107608.

    Article  Google Scholar 

  23. Fan JC, Shi ZX, Zhang L, Wang JL, Yin J. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement. Nanoscale. 2012;4:7046.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Chen JR, Li XX, Zhu YF, Jiang WB, Fu YQ. Storable silicon/shape memory polyurethane hybrid sols prepared by a facile synthesis process and their application to aramid fibers. J Sol-Gel Sci Technol. 2015;74:670.

    Article  CAS  Google Scholar 

  25. Dong L, Shi M, Xu SJ, Sun QL, Pan GW, Yao LR, Zhu CH. Surface construction of fluorinated TiO(2)nanotube networks to develop UV-resistant superhydrophobic aramid fabric. RSC Adv. 2020;10:22578.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Shao Q, Lu F, Yu L, Xu XR, Huang XH, Huang YD, Hu Z. Facile immobilization of graphene nanosheets onto PBO fibers via MOF-mediated coagulation strategy: Multifunctional interface with self-healing and ultraviolet-resistance performance. J Colloid Interface Sci. 2021;587:661.

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Tikhonov IV, Tokarev AV, Shorin SV, Shchetinin VM, Chernykh TE, Bova VG. Russian aramid fibers: past - present - future. Fibre Chem. 2013;45:1.

    Article  CAS  Google Scholar 

  28. Jassal M, Agrawal AK, Gupta D, Panwar K. Aramid fibers. In: Hu JL, Kumar B, Lu J, editors. Handbook of fibrous materials. Weinheim: Wiley-VCH; 2020. p. 207–31.

    Chapter  Google Scholar 

  29. Wittbecker EL, Morgan PW. Interfacial polycondensation. I. J Polym Sci. 1959;40:289.

    Article  CAS  ADS  Google Scholar 

  30. Morgan PW. Condensation polymers: by interfacial and solution methods. New York: Interscience Publishers; 1965.

    Google Scholar 

  31. Kwolek SL, Morgan PW, Schaefgen JR, Gulrich LW. Synthesis, anisotropic solutions, and fibers of poly(1,4-benzamide). Macromolecules. 1977;10:1390.

    Article  CAS  ADS  Google Scholar 

  32. Li N, Zhang XK, Yu JR, Wang Y, Zhu J, Hu ZM. Synthesis and characterization of easily colored meta-aramid copolymer containing ether bonds. Chin J Polym Sci. 2019;37:227.

    Article  Google Scholar 

  33. Afshari M, Sikkema DJ, Lee K, Bogle M. High performance fibers based on rigid and flexible polymers. Polym Rev. 2008;48:230.

    Article  CAS  Google Scholar 

  34. Higashi F, Goto M, Kakinoki H. Synthesis of polyamides by a new direct polycondensation reaction using triphenyl phosphite and lithium chloride. J Polym Sci Polym Chem Ed. 1980;18:1711.

    Article  CAS  ADS  Google Scholar 

  35. Kricheldorf HR, Schmidt B, Buerger R. New polymer syntheses. 67. Kevlar-type polyaramides of monosubstituted terephthalic acids. Macromolecules. 1992;25:5465.

    Article  CAS  ADS  Google Scholar 

  36. Zhang T, Luo GH, Wei F, Lu YY, Qian WZ, Tuo XL. A novel scalable synthesis process of PPTA by coupling n-pentane evaporation for polymerization heat removal. Chin Chem Lett. 2011;22:1379.

    Article  CAS  Google Scholar 

  37. Ozawa S, Nakagawa Y, Matsuda K, Nishihara T, Yunoki H, inventors; Teijin Ltd, assignee. Novel aromatic copolyamides prepared from 3,4ʹ diphenylene type diamines, and shaped articles therefrom. United States. 1978. https://pubchem.ncbi.nlm.nih.gov/patent/US-4075172-A

  38. Matsuda H, Asakura T, Nakagawa Y. Sequence analysis of Technora (copolyamide of terephthaloyl chloride, p-phenylenediamine, and 3,4‘-diaminodiphenyl ether) using 13C NMR. Macromolecules. 2003;36:6160.

    Article  CAS  ADS  Google Scholar 

  39. Hayashida S. Technora® fiber: super fiber from the isotropic solution of rigid-rod polymer. In: The Society of Fiber S, Techno J, editors. High-performance and specialty fibers: concepts, technology and modern applications of man-made fibers for the future. Tokyo: Springer; 2016. p. 149–169.

  40. Zapp JA. HMPA: a possible carcinogen. Science. 1975;190:422.

    Article  CAS  ADS  Google Scholar 

  41. Yotsumoto T, Imai I, inventors; Pneumatic tire with bead reinforcement. Japan. 1987. https://www.j-platpat.inpit.go.jp/c1800/PU/JP-S60-272424/266CF7920AD8CB45721E379AEF232A861A5556DF0F7B83A765B3F1D9DA3C3E0C/10/ja

  42. Shin H, inventor EI Du Pont de Nemours and Co, assignee. Vapor-phase preparation of aromatic polyamides. United States. 1977. https://pubchem.ncbi.nlm.nih.gov/patent/US-4009153-A

  43. Yamazaki N, Matsumoto M, Higashi F. Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J Polym Sci Polym Chem Ed. 1975;13:1373.

    Article  CAS  ADS  Google Scholar 

  44. Higashi F, Goto M, Nakano Y, Kakinoki H. Wholly aromatic polyamides by the direct polycondensation reaction using triphenyl phosphite in the presence of poly(4-vinylpyridine). J Polym Sci Polym Chem Ed. 1980;18:851.

    Article  CAS  ADS  Google Scholar 

  45. Higashi F, Taguchi Y. Aromatic polyamides by phosphorylation reaction with triphenylphosphite and LiCl in the presence of polymer matrix. J Polym Sci Polym Chem Ed. 1980;18:2875.

    Article  CAS  ADS  Google Scholar 

  46. Higashi F, Ogata S-I, Aoki Y. High-molecular-weight poly(p-phenyleneterephthalamide) by the direct polycondensation reaction with triphenyl phosphite. J Polym Sci Polym Chem Ed. 1982;20:2081.

    Article  CAS  ADS  Google Scholar 

  47. Silver FM. Aromatic polyamides. IV. A novel synthesis of sulfonated poly(para-phenyleneterephthalamide): polymerization of terephthalic acid and para-phenylenediamine in sulfur trioxide. J Polym Sci Polym Chem Ed. 1979;17:3519.

    Article  CAS  ADS  Google Scholar 

  48. Shoji Y, Mizoguchi K, Ueda M. Synthesis of aramids by polycondensation of aromatic dicarboxylic acids with aromatic diamines containing ether linkages. Polym J. 2008;40:680.

    Article  CAS  Google Scholar 

  49. Perry RJ, Turner SR, Blevins RW. Synthesis of linear, high-molecular-weight aromatic polyamides by the palladium-catalyzed carbonylation and condensation of aromatic diiodides, diamines, and carbon monoxide. Macromolecules. 1993;26:1509.

    Article  CAS  ADS  Google Scholar 

  50. Dewilde S, Vander Hoogerstraete T, Dehaen W, Binnemans K. Synthesis of poly-p-phenylene terephthalamide (PPTA) in ionic liquids. ACS Sustain Chem Eng. 2018;6:1362.

    Article  CAS  Google Scholar 

  51. Wang PJ, Wang K, Zhang JS, Luo GS. Non-aqueous suspension polycondensation in NMP-CaCl2/paraffin system: a new approach for the preparation of poly(p-phenylene terephthalamide). Chin J Polym Sci. 2015;33:564.

    Article  Google Scholar 

  52. Wang PJ, Wang K, Zhang JS, Luo GS. Preparation of poly(p-phenylene terephthalamide) in a microstructured chemical system. RSC Adv. 2015;5:64055.

    Article  CAS  ADS  Google Scholar 

  53. Li MM, Zhou L, Zhang ZQ, Wang Q, Gao JN, Zhang SP, Lei L. One-step synthesis of poly(methacrylate)-b-polyester via “one organocatalyst, two polymerizations.” Polym Chem. 2021;12:5069.

    Article  CAS  Google Scholar 

  54. Teator AJ, Lastovickova DN, Bielawski CW. Switchable polymerization catalysts. Chem Rev. 2016;116:1969.

    Article  CAS  PubMed  Google Scholar 

  55. Yoneyama M, Kakimoto M, Imai Y. Novel synthesis of aromatic polyamides by palladium-catalyzed polycondensation of aromatic dibromides, aromatic diamines, and carbon monoxide. Macromolecules. 1908;1988:21.

    Google Scholar 

  56. Peleteiro S, Rivas S, Alonso JL, Santos V, Parajo JC. Furfural production using ionic liquids: a review. Bioresour Technol. 2016;202:181.

    Article  CAS  PubMed  Google Scholar 

  57. Holbrey JD, Seddon KR. Ionic liquids. Clean Products Processes. 1999;1:223.

    Google Scholar 

  58. Carmichael AJ, Haddleton DM. Polymer synthesis in ionic liquids. In: Wasserscheid P, Welton T, editors. Ionic liquids in synthesis. Weinheim: WILEY-VCH Verlag GmbH & Co; 2007. p. 619–40.

    Google Scholar 

  59. Lozinskaya EI, Shaplov AS, Vygodskii YS. Direct polycondensation in ionic liquids. Eur Polym J. 2004;40:2065.

    Article  CAS  Google Scholar 

  60. Vygodskii YS, Lozinskaya EI, Shaplov AS. Ionic liquids as novel reaction media for the synthesis of condensation polymers. Macromol Rapid Commun. 2002;23:676.

    Article  CAS  Google Scholar 

  61. Dewilde S, Winters J, Dehaen W, Binnemans K. Polymerization of PPTA in ionic liquid/cosolvent mixtures. Macromolecules. 2017;50:3089.

    Article  CAS  ADS  Google Scholar 

  62. Brock T, Sherrington DC. Preparation of spherical polybenzimidazole particulates using a non-aqueous suspension methodology. Polymer. 1992;33:1773.

    Article  CAS  Google Scholar 

  63. Zhu N, Hu X, Fang Z, Guo K. Chemoselective polymerizations. Prog Polym Sci. 2021;117: 101397.

    Article  CAS  Google Scholar 

  64. Qiu Z, Zhao L, Weatherley L. Process intensification technologies in continuous biodiesel production. Chem Eng Process. 2010;49:323.

    Article  CAS  Google Scholar 

  65. Wagner J, Kirner T, Mayer G, Albert J, Köhler JM. Generation of metal nanoparticles in a microchannel reactor. Chem Eng J. 2004;101:251.

    Article  CAS  Google Scholar 

  66. Zhao H, Wang J-X, Wang Q-A, Chen J-F, Yun J. Controlled liquid antisolvent precipitation of hydrophobic pharmaceutical nanoparticles in a microchannel reactor. Ind Eng Chem Res. 2007;46:8229.

    Article  CAS  Google Scholar 

  67. Shi HH, Nie KX, Dong B, Long MQ, Xu H, Liu ZC. Recent progress of microfluidic reactors for biomedical applications. Chem Eng J. 2019;361:635.

    Article  CAS  Google Scholar 

  68. Kobayashi J, Mori Y, Kobayashi S. Multiphase organic synthesis in microchannel reactors. Chem Asian J. 2006;1:22.

    Article  CAS  PubMed  Google Scholar 

  69. Shi XQ, Liu S, Duanmu C, Shang MJ, Qiu M, Shen C, Yang Y, Su YH. Visible-light photooxidation of benzene to phenol in continuous-flow microreactors. Chem Eng J. 2021;420: 129976.

    Article  CAS  Google Scholar 

  70. Yoshida J, Nagaki A, Iwasaki T, Suga S. Enhancement of chemical selectivity by microreactors. Chem Eng Technol. 2005;28:259.

    Article  CAS  Google Scholar 

  71. Jassal M, Ghosh S. Aramid fibres-an overview. Indian J Fibre Text Res. 2002;27:290.

    CAS  Google Scholar 

  72. Dobb MG, Johnson DJ, Saville BP. Supramolecular structure of a high-modulus polyaromatic fiber (Kevlar 49). J Polym Sci Polym Phys Ed. 1977;15:2201.

    Article  CAS  Google Scholar 

  73. Dobb MG, Robson RM. Structural characteristics of aramid fibre variants. J Mater Sci. 1990;25:459.

    Article  CAS  ADS  Google Scholar 

  74. Morgan RJ, Pruneda CO, Steele WJ. The relationship between the physical structure and the microscopic deformation and failure processes of poly(p-phenylene terephthalamide) fibers. J Polym Sci Polym Phys Ed. 1983;21:1757.

    Article  CAS  Google Scholar 

  75. Dayal P, Guenthner AJ, Kyu T. Morphology development of main-chain liquid crystalline polymer fibers during solvent evaporation. J Polym Sci Part B. 2007;45:429.

    Article  CAS  Google Scholar 

  76. Li M, Wang J, Lu S, Wang C. The present research and functional improvement of the aramid fibers. Polym Bull. 2018;225:58.

    Google Scholar 

  77. Yang HH, Chouinard MP, Lingg WJ. Strain birefringence of Kevlar aramid fibers. J Appl Polym Sci. 1987;34:1399.

    Article  CAS  Google Scholar 

  78. Panar M, Avakian P, Blume RC, Gardner KH, Gierke TD, Yang HH. Morphology of poly(p-phenylene terephthalamide) fibers. J Polym Sci Polym Phys Ed. 1955;1983:21.

    Google Scholar 

  79. Northolt MG, van Aartsen JJ. On the crystal and molecular structure of poly-(p-phenylene terephthalamide). J Polym Sci B Polym Lett Ed. 1973;11:333.

    Article  CAS  ADS  Google Scholar 

  80. Zhu MF, Zhou Z. Aromatic polyamide fibers. In: Huang BY, editor. China’s strategic emerging industries: new materials—high-performance fibers. Beijing: China Railway Publishing House; 2017. p. 41–78.

    Google Scholar 

  81. Ma QL, Li CS, Tian M. Chemical and physical properties of para-aromatic polyamide fibers. In: Yu JY, Xu J, Yue QR, Duan XP, Wang YP, editors. Para-oriented aromatic polyamide fiber. Beijing: National Defense Industry Press; 2018. p. 45–62.

    Google Scholar 

  82. Ghosh L, Fadhilah MH, Kinoshita H, Ohmae N. Synergistic effect of hyperthermal atomic oxygen beam and vacuum ultraviolet radiation exposures on the mechanical degradation of high-modulus aramid fibers. Polymer. 2006;47:6836.

    Article  CAS  Google Scholar 

  83. Nimmanpipug P, Tashiro K, Maeda Y, Rangsiman O. Factors governing the three-dimensional hydrogen bond network structure of poly(m-phenylene isophthalamide) and a series of its model compounds: (1) systematic classification of structures analyzed by the X-ray diffraction method. J Phys Chem B. 2002;106:6842.

    Article  CAS  Google Scholar 

  84. Jeong YG, Jeon GW. Microstructure and performance of multiwalled carbon nanotube/m-aramid composite films as electric heating elements. ACS Appl Mater Interfaces. 2013;5:6527.

    Article  CAS  PubMed  Google Scholar 

  85. Wang X, Hu Z, Liu Z. Aromatic high-temperature resistant fibers and performances of main varieties. Mater Rep. 2007;05:53.

    Google Scholar 

  86. Tanner D, Dhingra AK, Pigliacampi JJ. Aramid fiber composites for general engineering. JOM. 1986;38:21.

    Article  CAS  Google Scholar 

  87. Liu Z, Zhang J, Tang L, Zhou Y, Lin Y, Wang R, Kong J, Tang Y, Gu J. Improved wave-transparent performances and enhanced mechanical properties for fluoride-containing PBO precursor modified cyanate ester resins and their PBO fibers/cyanate ester composites. Compos Part B. 2019;178: 107466.

    Article  CAS  Google Scholar 

  88. Cao H, Xie X, Xing Y. A new material for the 21st century: PBO fiber. Aerosp Technol. 2008;6:59.

    Google Scholar 

  89. Tang L, Zhang JL, Gu JW. Random copolymer membrane coated PBO fibers with significantly improved interfacial adhesion for PBO fibers/cyanate ester composites. Chin J Aeronaut. 2021;34:659.

    Article  Google Scholar 

  90. Ramadhan AA, Abu Talib AR, Rafie ASM, Zahari R. High velocity impact response of Kevlar-29/epoxy and 6061–T6 aluminum laminated panels. Mater Des. 2013;43:307.

    Article  CAS  Google Scholar 

  91. Yue CY, Sui GX, Looi HC. Effects of heat treatment on the mechanical properties of Kevlar-29 fibre. Compos Sci Technol. 2000;60:421.

    Article  CAS  Google Scholar 

  92. Kanie T, Fujii K, Arikawa H, Inoue K. Flexural properties and impact strength of denture base polymer reinforced with woven glass fibers. Dent Mater. 2000;16:150.

    Article  CAS  PubMed  Google Scholar 

  93. Kanie T, Arikawa H, Fujii K, Ban S. Impact strength of acrylic denture base resin reinforced with woven glass fiber. Dent Mater J. 2003;22:30.

    Article  CAS  PubMed  Google Scholar 

  94. Rude TJ, Strait LH, Ruhala LA. Measurement of fiber density by helium pycnometry. J Compos Mater. 1948;2000:34.

    Google Scholar 

  95. Gore PM, Kandasubramanian B. Functionalized aramid fibers and composites for protective applications: a review. Ind Eng Chem Res. 2018;57:16537.

    Article  CAS  Google Scholar 

  96. Manigandan S. Determination of fracture behavior under biaxial loading of Kevlar 149. Appl Mech Mater. 2015;766–767:1127.

    Article  Google Scholar 

  97. García JM, García FC, Serna F, de la Peña JL. Aromatic polyamides (Aramids). In: Thomas S, Visakh PM, editors. Handbook of engineering and specialty thermoplastics. Hoboken: John Wiley & Sons, Inc and Salem: Scrivener Publishing LLC; 2011. p. 141–81.

    Chapter  Google Scholar 

  98. Rao Y, Waddon AJ, Farris RJ. Structure–property relation in poly(p-phenylene terephthalamide) (PPTA) fibers. Polymer. 2001;42:5937.

    Article  CAS  Google Scholar 

  99. Chae HG, Kumar S. Rigid-rod polymeric fibers. J Appl Polym Sci. 2006;100:791.

    Article  CAS  Google Scholar 

  100. Clawson JK. Structure and defects in high-performance aramid fibers. University of Illinois at Urbana-Champaign; 2013.

    Google Scholar 

  101. Picken SJ, van der Zwaag S, Northolt MG. Molecular and macroscopic orientational order in aramid solutions: a model to explain the influence of some spinning parameters on the modulus of aramid yarns. Polymer. 1992;33:2998.

    Article  CAS  Google Scholar 

  102. Allen SR, Roche EJ, Bennett B, Molaison R. Tensile deformation and failure of poly(p-phenylene terephthalamide) fibres. Polymer. 1849;1992:33.

    Google Scholar 

  103. Ahn D, Lee J, Kang C. Physico-chemical properties of new composite polymer for heat resistance with thin-film form through the blending of m-aramid and polyurethane (PU). Polymer. 2018;138:17.

    Article  CAS  Google Scholar 

  104. Cao KK, Liu YF, Yang Y, Yuan F, Wang J, Liu HM, Jiang MJ, Yang J. The preparation and characterization of a heterocyclic meta-aramid fiber with outstanding thermal stability. High Perform Polym. 2021;33:554.

    Article  CAS  Google Scholar 

  105. Kim SS, Lee J. Miscibility and antimicrobial properties of m-aramid/chitosan hybrid composite. Ind Eng Chem Res. 2013;52:12703.

    Article  CAS  Google Scholar 

  106. Bourbigot S, Flambard X, Poutch F. Study of the thermal degradation of high performance fibres—application to polybenzazole and p-aramid fibres. Polym Degrad Stabil. 2001;74:283.

    Article  CAS  Google Scholar 

  107. Liu X, Yu W. Degradation of PBO fiber by heat and light. Res J Text Appar. 2006;10:26.

    Article  Google Scholar 

  108. Derombise G, Vouyovitch Van Schoors L, Davies P. Degradation of Technora aramid fibres in alkaline and neutral environments. Polym Degrad Stabil. 2009;94:1615.

    Article  CAS  Google Scholar 

  109. Xu L, Hu JT, Ma HJ, Wu GZ. Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers. Radiat Phys Chem. 2018;145:74.

    Article  ADS  Google Scholar 

  110. Wang CX, Du M, Lv JC, Zhou QQ, Ren Y, Liu GL, Gao DW, Jin LM. Surface modification of aramid fiber by plasma induced vapor phase graft polymerization of acrylic acid. I. Influence of plasma conditions. Appl Surf Sci. 2015;349:333.

    Article  CAS  Google Scholar 

  111. Li T, Wang ZX, Zhang H, Hu ZM, Yu JR, Wang Y, Zhu J. Non-destructive modification of aramid fiber by building nanoscale-coating solution to enhance the interfacial adhesion properties of the fiber-reinforced composites. J Compos Mater. 1823;2021:55.

    Google Scholar 

  112. Shen PX, Liao JB, Chen Q, Ruan HM, Shen JN. Organic solvent resistant Kevlar nanofiber-based cation exchange membranes for electrodialysis applications. J Membr Sci. 2021;630: 119300.

    Article  CAS  Google Scholar 

  113. Derombise G, Van Schoors LV, Davies P. Degradation of aramid fibers under alkaline and neutral conditions: relations between the chemical characteristics and mechanical properties. J Appl Polym Sci. 2010;116:2504.

    Article  CAS  Google Scholar 

  114. Ozawa S. A new approach to high modulus, high tenacity fibers. Polym J. 1987;19:119.

    Article  CAS  Google Scholar 

  115. Springer H, Abu Obaid A, Prabawa AB, Hinrichsen G. Influence of hydrolytic and chemical treatment on the mechanical properties of aramid and copolyaramid fibers. Text Res J. 1998;68:588.

    Article  CAS  Google Scholar 

  116. Zhang Y, Xu G. Aramid fiber moisture absorption performance test and evaluation. J Text Sci Eng. 2021;38:49.

    Google Scholar 

  117. Ren Y, Wang C, Qiu Y. Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy. Appl Surf Sci. 2007;253:9283.

    Article  CAS  ADS  Google Scholar 

  118. Li Y, Sun J, Yao L, Ji F, Peng S, Gao Z, Qiu Y. Influence of moisture on effectiveness of plasma treatments of polymer surfaces. J Adhes Sci Technol. 2012;26:1123.

    Article  CAS  Google Scholar 

  119. Fuzek JF. Absorption and desorption of water by some common fibers. Ind Eng Chem Res. 1985;24:140.

    Article  CAS  Google Scholar 

  120. Saijo K, Arimoto O, Hashimoto T, Fukuda M, Kawai H. Moisture sorption mechanism of aromatic polyamide fibres: diffusion of moisture into regular Kevlar as observed by time-resolved small-angle X-ray scattering technique. Polymer. 1994;35:496.

    Article  CAS  Google Scholar 

  121. Auerbach I, Carnicom ML. Sorption of water by nylon 66 and kevlar 29. Equilibria and kinetics. J Appl Polym Sci. 1991;42:2417.

    Article  CAS  Google Scholar 

  122. Mooney DA, MacElroy JMD. Differential water sorption studies on KevlarTM 49 and as-polymerised poly (p-phenylene terephthalamide): adsorption and desorption isotherms. Chem Eng Sci. 2004;59:2159.

    Article  CAS  Google Scholar 

  123. Sahin K, Clawson JK, Singletary J, Horner S, Zheng J, Pelegri A, Chasiotis I. Limiting role of crystalline domain orientation on the modulus and strength of aramid fibers. Polymer. 2018;140:96.

    Article  CAS  Google Scholar 

  124. Tonelli AE, Srinivasarao M. Polymers from the inside out: an introduction to macromolecules. MRS Bull. 2001;4:1024.

    Google Scholar 

  125. Xing LX, Liu L, Huang YD, Jiang DW, Jiang B, He JM. Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation. Compos Part B. 2015;69:50.

    Article  CAS  Google Scholar 

  126. Deteresa SJ, Allen SR, Farris RJ, Porter RS. Compressive and torsional behaviour of Kevlar 49 fibre. J Mater Sci. 1984;19:57.

    Article  CAS  ADS  Google Scholar 

  127. Fu SR, Yu BW, Tang W, Fan M, Chen F, Fu Q. Mechanical properties of polypropylene composites reinforced by hydrolyzed and microfibrillated Kevlar fibers. Compos Sci Technol. 2018;163:141.

    Article  CAS  Google Scholar 

  128. Luo LB, Wu P, Cheng Z, Hong DW, Li BY, Wang X, Liu XY. Direct fluorination of para-aramid fibers 1: fluorination reaction process of PPTA fiber. J Fluor Chem. 2016;186:12.

    Article  CAS  Google Scholar 

  129. Moure MM, Feito N, Aranda-Ruiz J, Loya JA, Rodriguez-Millan M. On the characterization and modelling of high-performance para-aramid fabrics. Compos Struct. 2019;212:326.

    Article  Google Scholar 

  130. Dobb MG, Robson RM, Roberts AH. The ultraviolet sensitivity of Kevlar 149 and Technora fibres. J Mater Sci. 1993;28:785.

    Article  CAS  ADS  Google Scholar 

  131. Zhang H, Zhang J, Chen J, Hao X, Wang S, Feng X, Guo Y. Effects of solar UV irradiation on the tensile properties and structure of PPTA fiber. Polym Degrad Stabil. 2006;91:2761.

    Article  CAS  Google Scholar 

  132. Luo JJ, Zhang MY, Nie JY, Liu GD, Tan JJ, Yang B, Song SX, Zhao JR. A deep insight into the structure and performance evolution of aramid nanofiber films induced by UV irradiation. Polym Degrad Stabil. 2019;167:170.

    Article  CAS  Google Scholar 

  133. Li SN, Gu AJ, Xue J, Liang GZ, Yuan L. The influence of the short-term ultraviolet radiation on the structure and properties of poly(p-phenylene terephthalaramide) fibers. Appl Surf Sci. 2013;265:519.

    Article  CAS  ADS  Google Scholar 

  134. Sa RN, Yan Y, Wang L, Li Y, Zhang LQ, Ning NY, Wang WC, Tian M. Improved adhesion properties of poly-p-phenyleneterephthamide fibers with a rubber matrix via UV-initiated grafting modification. RSC Adv. 2015;5:94351.

    Article  CAS  ADS  Google Scholar 

  135. Wang L, Shi Y, Chen S, Wang W, Tian M, Ning N, Zhang L. Highly efficient mussel-like inspired modification of aramid fibers by UV-accelerated catechol/polyamine deposition followed chemical grafting for high-performance polymer composites. Chem Eng J. 2017;314:583.

    Article  CAS  Google Scholar 

  136. Chen JR, Zhu YF, Ni QQ, Fu YQ, Fu X. Surface modification and characterization of aramid fibers with hybrid coating. Appl Surf Sci. 2014;321:103.

    Article  CAS  ADS  Google Scholar 

  137. Sa RN, Yan Y, Wei ZH, Zhang LQ, Wang WC, Tian M. Surface modification of aramid fibers by bio-inspired poly(dopamine) and rpoxy functionalized silane grafting. ACS Appl Mater Interfaces. 2014;6:21730.

    Article  CAS  PubMed  Google Scholar 

  138. Liu L, Huang YD, Zhang ZQ, Jiang B, Nie J. Ultrasonic modification of aramid fiber–epoxy interface. J Appl Polym Sci. 2001;81:2764.

    Article  CAS  Google Scholar 

  139. Liu L, Huang YD, Zhang ZQ, Yang XB. Effect of ultrasound on wettability between aramid fibers and epoxy resin. J Appl Polym Sci. 2006;99:3172.

    Article  CAS  Google Scholar 

  140. Gu RX, Yu JR, Hu CC, Chen L, Zhu J, Hu ZM. Surface treatment of para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure. Appl Surf Sci. 2012;258:10168.

    Article  CAS  ADS  Google Scholar 

  141. Zhang Y, Huang Y, Liu L, Wu L. Surface modification of aramid fibers with γ-ray radiation for improving interfacial bonding strength with epoxy resin. J Appl Polym Sci. 2007;106:2251.

    Article  CAS  Google Scholar 

  142. Kim E-M, Jang J. Surface modification of meta-aramid films by UV/ozone irradiation. Fiber Polym. 2010;11:677.

    Article  CAS  Google Scholar 

  143. Zheng HD, Zheng LJ. Dyeing of meta-aramid fibers with disperse dyes in supercritical carbon dioxide. Fiber Polym. 2014;15:1627.

    Article  CAS  Google Scholar 

  144. Didenko YT, McNamara WB, Suslick KS. Hot spot conditions during cavitation in water. J Am Chem Soc. 1999;121:5817.

    Article  CAS  Google Scholar 

  145. Li S, Gu A, Liang G. Research progress in surface modification of aramid fibers. New Chem Mater. 2012;40:1.

    ADS  Google Scholar 

  146. Liu L, Huang YD, Zhang ZQ, Jiang ZX, Wu LN. Ultrasonic treatment of aramid fiber surface and its effect on the interface of aramid/epoxy composites. Appl Surf Sci. 2008;254:2594.

    Article  CAS  ADS  Google Scholar 

  147. Moraes CV, Demétrio da Silva V, Castegnaro MV, Morais J, Schrekker HS, Amico SC. Lightweight composites through imidazolium ionic liquid enhanced aramid–epoxy resin interactions. ACS Appl Polym Mater. 2020;2:1754.

    Article  CAS  Google Scholar 

  148. Wu G. Influence of ultrasonic treatment on the dyeing properties of para-aramid fiber. Text Aux. 2017;34:38.

    CAS  Google Scholar 

  149. Sun Z, Ma J. Research progress on surface modification for electroless silver plating of aramid fibers. Tech Text. 2019;37:1.

    Google Scholar 

  150. Conrads H, Schmidt M. Plasma generation and plasma sources. Plasma Sources Sci Technol. 2000;9:441.

    Article  CAS  ADS  Google Scholar 

  151. Wu GM. Oxygen plasma treatment of high performance fibers for composites. Mater Chem Phys. 2004;85:81.

    Article  CAS  ADS  Google Scholar 

  152. Foest R, Kindel E, Ohl A, Stieber M, Weltmann KD. Non-thermal atmospheric pressure discharges for surface modification. Plasma Phys Control Fusion. 2005;47:B525.

    Article  CAS  Google Scholar 

  153. Liu Q, Guo R. Research progress of modification of aramid fiber. J Text Sci Eng. 2020;37:86.

    Google Scholar 

  154. Kong H, Zhang R, Zhou J, Ma Y, Teng C, Yu M. The research status and progress of aramid fibers. Mater China. 2013;32:676.

    CAS  Google Scholar 

  155. Xing LX, Liu L, He M, Wu ZJ, Huang YD. Effect of different graft polymerization systems on surface modification of aramid fibers with Γ-ray radiation. Adv Mat Res. 2013;658:80.

    Google Scholar 

  156. Dong Y, Jang J. The enhanced cationic dyeability of ultraviolet/ozone-treated meta-aramid fabrics. Color Technol. 2011;127:173.

    Article  CAS  Google Scholar 

  157. Chmielewski AG, Haji-Saeid M, Ahmed S. Progress in radiation processing of polymers. Nucl Instrum Methods Phys Res Sect B. 2005;236:44.

    Article  CAS  ADS  Google Scholar 

  158. Xiao H, Lu Y, Wang M, Qin X, Zhao W, Luan J. Effect of gamma-irradiation on the mechanical properties of polyacrylonitrile-based carbon fiber. Carbon. 2013;52:427.

    Article  CAS  Google Scholar 

  159. da Silva AO, Monsores KGD, Oliveira SD, Weber RP, Monteiro SN, Vital HD. Influence of gamma and ultraviolet radiation on the mechanical behavior of a hybrid polyester composite reinforced with curaua mat and aramid fabric. J Mater Res Technol. 2020;9:394.

    Article  CAS  Google Scholar 

  160. Liu XY, Yu WD, Pan N. Evaluation of high performance fabric under light irradiation. J Appl Polym Sci. 2011;120:552.

    Article  CAS  Google Scholar 

  161. Tian J, An LZ, Tan YF, Xu T, Li XT, Chen GX. Graphene oxide-modified aramid fibers for reinforcing epoxy resin matrixes. ACS Appl Nano Mater. 2021;4:9595.

    Article  CAS  Google Scholar 

  162. Cheng Z, Zhang LJ, Jiang C, Dai Y, Meng CB, Luo LB, Liu XY. Aramid fiber with excellent interfacial properties suitable for resin composite in a wide polarity range. Chem Eng J. 2018;347:483.

    Article  CAS  Google Scholar 

  163. Cheng Z, Li X, Lv JW, Liu Y, Liu XY. Constructing a new tear-resistant skin for aramid fiber to enhance composites interfacial performance based on the interfacial shear stability. Appl Surf Sci. 2021;544: 148935.

    Article  CAS  Google Scholar 

  164. Clifford AA, Williams JR. Introduction to supercritical fluids and their applications. In: Williams JR, Clifford AA, editors. Supercritical fluid methods and protocols. Totowa: Humana Press; 2000. p. 1–16.

    Google Scholar 

  165. Brunner G. Applications of supercritical fluids. Annu Rev Chem Biomol Eng. 2010;1:321.

    Article  CAS  PubMed  Google Scholar 

  166. Sanli D, Bozbag SE, Erkey C. Synthesis of nanostructured materials using supercritical CO2: part I. Physical transformations. J Mater Sci. 2012;47:2995.

    Article  CAS  ADS  Google Scholar 

  167. Bozbag SE, Sanli D, Erkey C. Synthesis of nanostructured materials using supercritical CO2: Part II. Chemical transformations. J Mater Sci. 2012;47:3469.

    Article  CAS  ADS  Google Scholar 

  168. Nikolai P, Rabiyat B, Aslan A, Ilmutdin A. Supercritical CO2: properties and technological applications: a review. J Therm Sci. 2019;28:394.

    Article  CAS  Google Scholar 

  169. Jing X, Han Y, Zheng L, Zheng H. Surface wettability of supercritical CO2 - ionic liquid processed aromatic polyamides. J CO2 Util. 2018;27:289.

    Article  CAS  Google Scholar 

  170. Zhang L, Kong H, Qiao M, Ding X, Yu M. Supercritical CO2-induced nondestructive coordination between ZnO nanoparticles and aramid fiber with highly improved interfacial-adhesion properties and UV resistance. Appl Surf Sci. 2020;521: 146430.

    Article  CAS  Google Scholar 

  171. Kong H, Chai J, Ding H, Yu M. Surface modification of aramid pulp via coating zinc oxide to improve its dispersion in epoxy assisted by supercritical carbon dioxide. Compos Commun. 2020;18:1.

    Article  CAS  Google Scholar 

  172. Zheng H, Zhang J, Du B, Wei Q, Zheng L. An investigation for the performance of meta-aramid fiber blends treated in supercritical carbon dioxide fluid. Fiber Polym. 2015;16:1134.

    Article  CAS  Google Scholar 

  173. Liu T-M, Zheng Y-S, Hu J. Surface modification of Aramid fibers with new chemical method for improving interfacial bonding strength with epoxy resin. J Appl Polym Sci. 2010;118:2541.

    Article  CAS  Google Scholar 

  174. Lin X, Guo L, Lin H. New research progress in modification of aramid fibers. J Tiangong Univ. 2016;35:10.

    Google Scholar 

  175. Wang B, Duan Y, Zhang J. Titanium dioxide nanoparticles-coated aramid fiber showing enhanced interfacial strength and UV resistance properties. Mater Des. 2016;103:330.

    Article  CAS  Google Scholar 

  176. Kobayashi S, Wakida T, Niu S, Hazama S, Ito T, Sasaki Y. The effect of sputter etching on the surface characteristics of dyed aramid fabrics. J Soc Dye Colour. 1995;111:72.

    Article  CAS  Google Scholar 

  177. He S, Sun G, Cheng X, Dai H, Chen X. Nanoporous SiO2 grafted aramid fibers with low thermal conductivity. Compos Sci Technol. 2017;146:91.

    Article  CAS  Google Scholar 

  178. Mori M, Uyama Y, Ikada Y. Surface modification of aramid fibre by graft polymerization. Polymer. 1994;35:5336.

    Article  CAS  Google Scholar 

  179. Dembek AA, Burch RR, Feiring AE. Synthesis of soluble, liquid crystalline aramids via transition metal π-Complexation. Macromol Symp. 1994;77:303.

    Article  CAS  Google Scholar 

  180. Tarantili PA, Andreopoulos AG. Mechanical properties of epoxies reinforced with chloride-treated aramid fibers. J Appl Polym Sci. 1997;65:267.

    Article  CAS  Google Scholar 

  181. Deng T, Zhang G, Dai F, Zhang F. Mild surface modification of para-aramid fiber by dilute sulfuric acid under microwave irradiation. Text Res J. 2017;87:799.

    Article  CAS  Google Scholar 

  182. Yue CY, Padmanabhan K. Interfacial studies on surface modified Kevlar fibre/epoxy matrix composites. Compos Pt B-Eng. 1999;30:205.

    Article  Google Scholar 

  183. Zhu X, Yuan L, Liang G, Gu A. Unique UV-resistant and surface active aramid fibers with simultaneously enhanced mechanical and thermal properties by chemically coating Ce0.8Ca0.2O1.8 having low photocatalytic activity. J Mater Chem A. 2014;2:11286.

    Article  CAS  Google Scholar 

  184. Ma L, Zhang J, Teng C. Covalent functionalization of aramid fibers with zinc oxide nano-interphase for improved UV resistance and interfacial strength in composites. Compos Sci Technol. 2020;188: 107996.

    Article  CAS  Google Scholar 

  185. Jia Z. Effect of surface treatment on the properties of PPTA fiber. Adv Mat Res. 2013;798–799:215.

    Google Scholar 

  186. Ling X, Jiang F, Lin H, Huang J. Study on surfacial modification of aramid fiber in acidic conditions of KMnO4. J Tiangong Univ. 2010;29:15.

    CAS  Google Scholar 

  187. Lin X, Jiang F, Lin H, Huang J. Surface modification of aramid fiber with potassium permanganate. China Synth Fiber Ind. 2010;29:43.

    Google Scholar 

  188. Fan C, Li BY, Ren MM, Wu P, Liu Y, Chen T, Cheng Z, Qin JQ, Liu XY. The reaction kinetics and mechanism of crude fluoroelastomer vulcanized by direct fluorination with fluorine/nitrogen gas. RSC Adv. 2015;5:18932.

    Article  CAS  ADS  Google Scholar 

  189. Kharitonov AP. Practical applications of the direct fluorination of polymers. J Fluor Chem. 2000;103:123.

    Article  CAS  Google Scholar 

  190. Lagow RJ, Margrave JL. Direct fluorination: a “new” approach to fluorine chemistry. In: Lippard SJ, editor. Progress in inorganic chemistry. Springer; 1979. p. 161–210.

    Chapter  Google Scholar 

  191. Cheng Z, Wu P, Li BY, Chen T, Liu Y, Ren MM, Wang ZM, Lai WC, Wang X, Liu XY. Surface chain cleavage behavior of PBIA fiber induced by direct fluorination. Appl Surf Sci. 2016;384:480.

    Article  CAS  ADS  Google Scholar 

  192. Cheng Z, Li BY, Huang JY, Chen T, Liu Y, Wang X, Liu XY. Covalent modification of Aramid fibers’ surface via direct fluorination to enhance composite interfacial properties. Mater Des. 2016;106:216.

    Article  CAS  Google Scholar 

  193. Lv JW, Cheng Z, Wu H, He TJ, Qin JQ, Liu XY. In-situ polymerization and covalent modification on aramid fiber surface via direct fluorination for interfacial enhancement. Compos Part B. 2020;182: 107608.

    Article  CAS  Google Scholar 

  194. Zhang H, Liang G, Gu A, Yuan L. Facile preparation of hyperbranched polysiloxane-grafted aramid fibers with simultaneously improved UV resistance, surface activity, and thermal and mechanical properties. Ind Eng Chem Res. 2014;53:2684.

    Article  CAS  Google Scholar 

  195. Zhang RL, Gao B, Ma QH, Zhang J, Cui HZ, Liu L. Directly grafting graphene oxide onto carbon fiber and the effect on the mechanical properties of carbon fiber composites. Mater Des. 2016;93:364.

    Article  CAS  Google Scholar 

  196. Mei L, He X, Li Y, Wang R, Wang C, Peng Q. Grafting carbon nanotubes onto carbon fiber by use of dendrimers. Mater Lett. 2010;64:2505.

    Article  CAS  Google Scholar 

  197. Lyu W, Zhang WY, Liu H, Liu YP, Zuo HY, Yan CN, Faul CFJ, Thomas A, Zhu MF, Liao YZ. Conjugated microporous polymer network grafted carbon nanotube fibers with tunable redox activity for efficient flexible wearable energy storage. Chem Mat. 2020;32:8276.

    Article  Google Scholar 

  198. Wang J, Liang G, Zhao W, Lü S, Zhang Z. Studies on surface modification of UHMWPE fibers via UV initiated grafting. Appl Surf Sci. 2006;253:668.

    Article  CAS  ADS  Google Scholar 

  199. Arora S, Majumdar A, Butola BS. Deciphering the structure-induced impact response of ZnO nanorod grafted UHMWPE woven fabrics. Thin-Walled Struct. 2020;156: 106991.

    Article  Google Scholar 

  200. Yang T, Han EL, Wang XD, Wu DZ. Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers. Appl Surf Sci. 2017;416:200.

    Article  CAS  ADS  Google Scholar 

  201. Qi ZH, Tan YF, Wang HT, Xu T, Wang LL, Xiao CF. Effects of noncovalently functionalized multiwalled carbon nanotube with hyperbranched polyesters on mechanical properties of epoxy composites. Polym Test. 2017;64:38.

    Article  CAS  Google Scholar 

  202. Wang L, Shi Y, Sa R, Ning N, Wang W, Tian M, Zhang L. Surface modification of aramid fibers by catechol/polyamine codeposition followed by silane grafting for enhanced interfacial adhesion to rubber matrix. Ind Eng Chem Res. 2016;55:12547.

    Article  CAS  Google Scholar 

  203. Fleischer CA, Morales AR, Koberstein JT. Interfacial modification through end group complexation in polymer blends. Macromolecules. 1994;27:379.

    Article  CAS  ADS  Google Scholar 

  204. Hong B, Luo Z, Xia Z, Lou J, Xiang K. Research progress in interfacial modification of aramid fibers. Eng Plast Appl. 2014;42:126.

    CAS  Google Scholar 

  205. Zhong JC, Luo Z, Hao Z, Guo YL, Zhou ZT, Li P, Xue B. Enhancing fatigue properties of styrene butadiene rubber composites by improving interface adhesion between coated aramid fibers and matrix. Compos Part B. 2019;172:485.

    Article  CAS  Google Scholar 

  206. Zhang S, Shi ZY, Cui P, Duan NM, Li X. Surface modification of aramid fibers with CaCl2 treatment and secondary functionalization of silane coupling agents. J Appl Polym Sci. 2020;137:49159.

    Article  CAS  Google Scholar 

  207. Jin Z, Luo Z, Yang SR, Lu SJ. Influence of complexing treatment and epoxy resin coating on the properties of aramid fiber reinforced natural rubber. J Appl Polym Sci. 2015;132:42122.

    Article  Google Scholar 

  208. Cheng Z, Chen C, Huang JY, Chen T, Liu Y, Liu XY. Nondestructive grafting of PEI on aramid fiber surface through the coordination of Fe (III) to enhance composite interfacial properties. Appl Surf Sci. 2017;401:323.

    Article  CAS  ADS  Google Scholar 

  209. Cheng Z, Hong DW, Dai Y, Jiang C, Meng CB, Luo LB, Liu XY. Highly improved UV resistance and composite interfacial properties of aramid fiber via iron (III) coordination. Appl Surf Sci. 2018;434:473.

    Article  CAS  ADS  Google Scholar 

  210. Li T, Wang ZX, Yu JR, Wang Y, Zhu J, Hu ZM. Cu (II) coordination modification of aramid fiber and effect on interfacial adhesion of composites. High Perform Polym. 2019;31:1054.

    Article  CAS  Google Scholar 

  211. Gong XY, Liu YY, Huang MN, Dong QL, Naik N, Guo ZH. Dopamine-modified aramid fibers reinforced epoxidized natural rubber nanocomposites. Compos Commun. 2022;29: 100996.

    Article  Google Scholar 

  212. Wang WC, Li RY, Tian M, Liu L, Zou H, Zhao XY, Zhang LQ. Surface silverized meta-aramid fibers prepared by bio-inspired poly(dopamine) functionalization. ACS Appl Mater Interfaces. 2013;5:2062.

    Article  CAS  PubMed  Google Scholar 

  213. Hussain S, Yorucu C, Ahmed I, Hussain R, Chen BQ, Khan MB, Siddique NA, Rehman IU. Surface modification of aramid fibres by graphene oxide nano-sheets for multiscale polymer composites. Surf Coat Technol. 2014;258:458.

    Article  CAS  Google Scholar 

  214. Zhang B, Liang TZ, Shao XM, Tian M, Ning NY, Zhang LQ, Wang WC. Nondestructive grafting of ZnO on the surface of aramid fibers followed by silane grafting to improve its interfacial adhesion property with rubber. ACS Appl Polym Mater. 2021;3:4587.

    Article  CAS  Google Scholar 

  215. Chai DL, Xie ZM, Wang YS, Liu L, Yum YJ. Molecular dynamics investigation of the adhesion mechanism acting between dopamine and the surface of dopamine-processed aramid fibers. ACS Appl Mater Interfaces. 2014;6:17974.

    Article  CAS  PubMed  Google Scholar 

  216. Zhang Y, Qu R, Wang Y, Jia X, Sun C, Sun H, Ji C, Zhang Y, Zhu Q. Enhancement of para-aramid fibers by depositing poly-p-paraphenylene terephthalamide oligomer modified multi-walled carbon nanotubes. Results Mater. 2021;9: 100170.

    Article  CAS  Google Scholar 

  217. Li M, Ma W, Zhou X. Surface modification of Kevlar fiber by nanoSiO2 deposition in supercritical fluid. Compos Interfaces. 2019;26:857.

    Article  CAS  ADS  Google Scholar 

  218. Ehlert GJ, Sodano HA. Zinc oxide nanowire interphase for enhanced interfacial strength in lightweight polymer fiber composites. ACS Appl Mater Interfaces. 2009;1:1827.

    Article  CAS  PubMed  Google Scholar 

  219. Zhang JW, Teng CQ. Nondestructive growing nano-ZnO on aramid fibers to improve UV resistance and enhance interfacial strength in composites. Mater Des. 2020;192: 108774.

    Article  CAS  Google Scholar 

  220. Yang CR, Dong J, Fang YT, Ma LX, Zhao X, Zhang QH. Preparation of novel low-kappa polyimide fibers with simultaneously excellent mechanical properties, UV-resistance and surface activity using chemically bonded hyperbranched polysiloxane. J Mater Chem C. 2018;6:1229.

    Article  CAS  Google Scholar 

  221. Li SN, Gu AJ, Liang GZ, Yuan L, Xue J. A facile and green preparation of poly(glycidyl methacrylate) coated aramide fibers. J Mater Chem. 2012;22:8960.

    Article  CAS  Google Scholar 

  222. Mahltig B, Böttcher H, Rauch K, Dieckmann U, Nitsche R, Fritz T. Optimized UV protecting coatings by combination of organic and inorganic UV absorbers. Thin Solid Films. 2005;485:108.

    Article  CAS  ADS  Google Scholar 

  223. Huang YR, Law JCF, Lam TK, Leung KSY. Risks of organic UV filters: a review of environmental and human health concern studies. Sci Total Environ. 2021;755: 142486.

    Article  CAS  PubMed  ADS  Google Scholar 

  224. Liu FG, Liu AM, Tao WJ, Yang YJ. Preparation of UV curable organic/inorganic hybrid coatings-a review. Prog Org Coat. 2020;145: 105685.

    Article  CAS  Google Scholar 

  225. Cheng K, Li MZ, Zhang SH, He M, Yu J, Feng Y, Lu SJ. Study on the structure and properties of functionalized fibers with dopamine. Colloid Surf A. 2019;582: 123846.

    Article  Google Scholar 

  226. Li MZ, Cheng K, Wang CH, Lu SJ. Functionalize aramid fibers with polydopamine to possess UV resistance. J Inorg Organomet Polym Mater. 2021;31:2791.

    Article  CAS  Google Scholar 

  227. Zhu JJ, Yuan L, Guan QB, Liang GZ, Gu AJ. A novel strategy of fabricating high performance UV-resistant aramid fibers with simultaneously improved surface activity, thermal and mechanical properties through building polydopamine and graphene oxide bi-layer coatings. Chem Eng J. 2017;310:134.

    Article  CAS  Google Scholar 

  228. Deng H, Zhang HD. In situ synthesis and hydrothermal crystallization of nanoanatase TiO2-SiO2 coating on aramid fabric (HTiSiAF) for UV protection. Microsc Res Tech. 2015;78:918.

    Article  CAS  PubMed  Google Scholar 

  229. Xiao XF, Liu X, Cao GY, Zhang CH, Xia LJ, Xu WL, Xiao SL. Atomic layer deposition TiO2/Al2O3 nanolayer of dyed polyamide/aramid blend fabric for high intensity UV light protection. Polym Eng Sci. 2015;55:1296.

    Article  CAS  Google Scholar 

  230. Yu L, Lu F, Huang XH, Liu YY, Li MY, Pan HZ, Wu LY, Huang YD, Hu Z. Facile interface design strategy for improving the uvioresistant and self-healing properties of poly(p-phenylene benzobisoxazole) fibers. ACS Appl Mater Interfaces. 2019;11:39292.

    Article  CAS  PubMed  Google Scholar 

  231. Zhou LF, Yuan L, Guan QB, Gu AJ, Liang GZ. Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance. Appl Surf Sci. 2017;411:34.

    Article  CAS  ADS  Google Scholar 

  232. Zhang LW, Kong HJ, Qiao MM, Ding XM, Yu MH. Growing nano-SiO2 on the surface of aramid fibers assisted by supercritical CO2 to enhance the thermal stability, interfacial shear strength, and UV resistance. Polymers. 2019;11:1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Park S, Kwon I, Sim J, Lee J, Kim S. Improving the photo-stability of p-aramid fiber by TiO2 nanosol. Text Color Finish. 2013;25:126.

    Article  Google Scholar 

  234. Xing Y, Ding X. UV photo-stabilization of tetrabutyl titanate for aramid fibers via sol–gel surface modification. J Appl Polym Sci. 2007;103:3113.

    Article  CAS  Google Scholar 

  235. Zhang CH, Huang YD, Yuan WJ, Zhang JN. UV aging resistance properties of PBO fiber coated with nano-ZnO hybrid sizing. J Appl Polym Sci. 2011;120:2468.

    Article  CAS  Google Scholar 

  236. Zhu XL, Yuan L, Liang GZ, Gu AJ. Unique surface modified aramid fibers with improved flame retardancy, tensile properties, surface activity and UV-resistance through in situ formation of hyperbranched polysiloxane-Ce0.8Ca0.2O1.8 hybrids. J Mater Chem A. 2015;3:12515.

    Article  CAS  Google Scholar 

  237. Liu X, Yu W, Xu P. Improving the photo-stability of high performance aramid fibers by sol-gel treatment. Fiber Polym. 2008;9:455.

    Article  CAS  Google Scholar 

  238. Patterson BA, Sodano HA. Enhanced interfacial strength and UV shielding of aramid fiber composites through ZnO nanoparticle sizing. ACS Appl Mater Interfaces. 2016;8:33963.

    Article  CAS  PubMed  Google Scholar 

  239. Sun H, Kong H, Ding H, Xu Q, Zeng J, Jiang F, Yu M, Zhang Y. Improving UV resistance of aramid fibers by simultaneously synthesizing TiO2 on their surfaces and in the interfaces between fibrils/microfibrils using supercritical carbon dioxide. Polymers. 2020;12:147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Cai H, Shen D, Yuan L, Guan QB, Gu AJ, Liang GZ. Developing thermally resistant polydopamine@nano turbostratic BN@CeO2 double core-shell ultraviolet absorber with low light-catalysis activity and its grafted high performance aramid fibers. Appl Surf Sci. 2018;452:389.

    Article  CAS  ADS  Google Scholar 

  241. Zhai LS, Huang ZY, Luo YX, Yang HY, Xing TH, He AN, Yu ZW, Liu J, Zhang XF, Xu WL, Chen FX. Decorating aramid fibers with chemically-bonded amorphous TiO2 for improving UV resistance in the simulated extreme environment. Chem Eng J. 2022;440: 135724.

    Article  CAS  Google Scholar 

  242. Chen FX, Zhai LS, Yang HY, Zhao SC, Wang ZL, Gao C, Zhou JY, Liu X, Yu ZW, Qin Y, Xu WL. Unparalleled armour for aramid fiber with excellent UV resistance in extreme environment. Adv Sci. 2021;8:2004171.

    Article  CAS  Google Scholar 

  243. Ishibashi K-i, Fujishima A, Watanabe T, Hashimoto K. Quantum yields of active oxidative species formed on TiO2 photocatalyst. J Photochem Photobiol A. 2000;134:139.

    Article  CAS  Google Scholar 

  244. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95:69.

    Article  CAS  Google Scholar 

  245. Justh N, Firkala T, László K, Lábár J, Szilágyi IM. Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition. Appl Surf Sci. 2017;419:497.

    Article  CAS  ADS  Google Scholar 

  246. Sun Z-G, Li X-S, Zhu X, Deng X-Q, Chang D-L, Zhu A-M. Facile and fast deposition of amorphous TiO2 film under atmospheric pressure and at room temperature, and its high photocatalytic activity under UV-C light. Chem Vapor Depos. 2014;20:8.

    Article  CAS  Google Scholar 

  247. Pheamhom R, Sunwoo C, Kim D-H. Characteristics of atomic layer deposited TiO2 films and their photocatalytic activity. J Vac Sci Technol A. 2006;24:1535.

    Article  CAS  Google Scholar 

  248. George SM. Atomic layer deposition: an overview. Chem Rev. 2010;110:111.

    Article  CAS  PubMed  Google Scholar 

  249. Gregorczyk K, Knez M. Hybrid nanomaterials through molecular and atomic layer deposition: Top down, bottom up, and in-between approaches to new materials. Prog Mater Sci. 2016;75:1.

    Article  CAS  Google Scholar 

  250. Chen FX, Yang HY, Li K, Deng B, Li QS, Liu X, Dong BH, Xiao XF, Wang D, Qin Y, Wang SM, Zhang KQ, Xu WL. Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability. ACS Nano. 2017;11:10330.

    Article  CAS  PubMed  Google Scholar 

  251. Luo YX, Zhang Y, Xing TH, He AN, Zhao SC, Huang ZY, Liang ZH, Liu X, Liu YQ, Yu YX, Qin Y, Chen FX, Xu WL. Full-color tunable and highly fire-retardant colored carbon fibers. Adv Fiber Mater. 2023. https://doi.org/10.1007/s42765-023-00294-4.

    Article  Google Scholar 

  252. Chen FX, Huang Y, Li R, Zhang SL, Jiang QY, Luo YX, Wang BS, Zhang WS, Wu XK, Wang F, Lyu P, Zhao SM, Xu WL, Wei F, Zhang RF. Superdurable and fire-retardant structural coloration of carbon nanotubes. Sci Adv. 2022;8:eabn5882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Xiao K, Giusto P, Chen FX, Chen RT, Heil T, Cao SW, Chen L, Fan FT, Jiang L. Light-driven directional ion transport for enhanced osmotic energy harvesting. Natl Sci Rev. 2021;8:nwaa231.

    Article  CAS  PubMed  Google Scholar 

  254. Liang ZH, Zhou ZZ, Li J, Zhang SL, Dong BH, Zhao L, Wu CC, Yang HY, Chen FX, Wang SM. Multi-functional silk fibers/fabrics with a negligible impact on comfortable and wearability properties for fiber bulk. Chem Eng J. 2021;415: 128980.

    Article  CAS  Google Scholar 

  255. Yang HY, Yu ZW, Li K, Jiang L, Liu X, Deng B, Chen FX, Xu WL. Facile and effective fabrication of highly UV-resistant silk fabrics with excellent laundering durability, and thermal and chemical stabilities. ACS Appl Mater Inter. 2019;11:27426.

    Article  CAS  Google Scholar 

  256. Yang HY, Wang YL, Liu KS, Liu X, Chen FX, Xu WL. Facile fabrication of ultraviolet-protective silk fabrics via atomic layer deposition of TiO2 with subsequent polyvinylsilsesquioxanes modification. Text Res J. 2019;89(17):3529.

    Article  CAS  Google Scholar 

  257. Lee S-M, Pippel E, Gösele U, Dresbach C, Qin Y, Chandran CV, Bräuniger T, Hause G, Knez M. Greatly increased toughness of infiltrated spider silk. Science. 2009;324:488.

    Article  CAS  PubMed  ADS  Google Scholar 

  258. Azpitarte I, Zuzuarregui A, Ablat H, Ruiz-Rubio L, Lopez-Ortega A, Elliott SD, Knez M. Suppressing the thermal and ultraviolet sensitivity of Kevlar by infiltration and hybridization with ZnO. Chem Mat. 2017;29:10068.

    Article  CAS  Google Scholar 

  259. Seo M, Park J, Kim SY. Self-assembly driven by an aromatic primary amide motif. Org Biomol Chem. 2012;10:5332.

    Article  CAS  PubMed  Google Scholar 

  260. Yang HH. Kevlar aramid fiber. New York: John Wiley & Sons Inc; 1993.

    Google Scholar 

  261. Bourbigot S, Flambard X. Heat resistance and flammability of high performance fibres: a review. Fire Mater. 2002;26:155.

    Article  CAS  Google Scholar 

  262. Gonzalez GM, Ward J, Song J, Swana K, Fossey SA, Palmer JL, Zhang FW, Lucian VM, Cera L, Zimmerman JF, Burpo FJ, Parker KK. para-Aramid fiber sheets for simultaneous mechanical and thermal protection in extreme environments. Matter. 2020;3:742.

    Article  Google Scholar 

  263. Li GP, Cao F, Zhang K, Hou L, Gao RC, Zhang WY, Wang YY. Design of anti-UV radiation textiles with self-assembled metal-organic framework coating. Adv Mater Interfaces. 2020;7:1901525.

    Article  CAS  Google Scholar 

  264. Xie F, Qin PL, Zhuo LH, Lu ZQ, Wang YF. Novel aramid paper-based materials with enhanced thermal conductivity via ZnO nanowire decoration on aramid fibers. J Mater Sci-Mater Electron. 2018;29:12161.

    Article  CAS  Google Scholar 

  265. Wang HM, Wang HM, Wang YL, Su XY, Wang CY, Zhang MC, Jian MQ, Xia KL, Liang XP, Lu HJ, Li S, Zhang YY. Laser writing of janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano. 2020;14:3219.

    Article  CAS  PubMed  Google Scholar 

  266. Zhou YF, Sun ZH, Jiang L, Chen SJ, Ma JW, Zhou FL. Flexible and conductive meta-aramid fiber paper with high thermal and chemical stability for electromagnetic interference shielding. Appl Surf Sci. 2020;533: 147431.

    Article  CAS  Google Scholar 

  267. Zhou YF, Li WY, Li LL, Sun ZH, Jiang L, Ma JW, Chen SJ, Ning X, Zhou FL. Lightweight and highly conductive silver nanoparticles functionalized meta-aramid nonwoven fabric for enhanced electromagnetic interference shielding. J Mater Sci. 2021;56:6499.

    Article  CAS  ADS  Google Scholar 

  268. Fuchs J. Reactive oxidants and antioxidants in skin pathophysiology. In: Fuchs J, editor. Oxidative injury in dermatopathology. Berlin: Springer; 1992. p. 87–190.

    Chapter  Google Scholar 

  269. Perchellet J-P, Perchellet EM. Antioxidants and multistage carcinogenesis in mouse skin. Free Radic Biol Med. 1989;7:377.

    Article  CAS  PubMed  Google Scholar 

  270. Carbonare MD, Pathak MA. Skin photosensitizing agents and the role of reactive oxygen species in photoaging. J Photochem Photobiol B-Biol. 1992;14:105.

    Article  Google Scholar 

  271. Ghasemi SE, Ranjbar AA, Hosseini MJ. Experimental evaluation of cooling performance of circular heat sinks for heat dissipation from electronic chips using nanofluid. Mech Res Commun. 2017;84:85.

    Article  Google Scholar 

  272. Wang YW, Cen JW, Jiang FM, Cao WJ. Heat dissipation of high-power light emitting diode chip on board by a novel flat plate heat pipe. Appl Therm Eng. 2017;123:19.

    Article  ADS  Google Scholar 

  273. Nieh HM, Teng TP, Yu CC. Enhanced heat dissipation of a radiator using oxide nano-coolant. Int J Therm Sci. 2014;77:252.

    Article  CAS  Google Scholar 

  274. Wu M-S, Liu KH, Wang Y-Y, Wan C-C. Heat dissipation design for lithium-ion batteries. J Power Sources. 2002;109:160.

    Article  CAS  Google Scholar 

  275. Wang ZX, Li T, Yu JR, Hu ZM, Zhu J, Wang Y. Constructing flexible and CuS-coated meta-aramid/polyacrylonitrile composite films with excellent coating adhesion. Ind Eng Chem Res. 2019;58:17965.

    Article  CAS  Google Scholar 

  276. Sato K, Horibe H, Shirai T, Hotta Y, Nakano H, Nagai H, Mitsuishi K, Watari K. Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J Mater Chem. 2010;20:2749.

    Article  CAS  Google Scholar 

  277. Lee JU, Park B, Kim BS, Bae DR, Lee W. Electrophoretic deposition of aramid nanofibers on carbon fibers for highly enhanced interfacial adhesion at low content. Compos Part A. 2016;84:482.

    Article  CAS  Google Scholar 

  278. Shi ZY, Zhang S, Wang JL, Zhang CP, Wang ZH, Zou B, Zhang XZ. Manufacturing method of aramid fiber applied to wearable intelligent system. J Alloy Compd. 2021;869: 159314.

    Article  CAS  Google Scholar 

  279. Zhang YZ, Cao ZJ, Liu SJ, Du ZG, Cui YL, Gu JN, Shi YZ, Li B, Yang SB. Charge-enriched strategy based on MXene-based polypyrrole layers toward dendrite-free zinc metal anodes. Adv Energy Mater. 2022;12:2103979.

    Article  CAS  Google Scholar 

  280. Haldar S, Rase D, Shekhar P, Jain C, Vinod CP, Zhang E, Shupletsov L, Kaskel S, Vaidhyanathan R. Incorporating conducting polypyrrole into a polyimide COF for carbon-free ultra-high energy supercapacitor. Adv Energy Mater. 2022;12:2200754.

    Article  CAS  Google Scholar 

  281. Yan BX, Wu Y, Guo L. Recent advances on polypyrrole electroactuators. Polymers. 2017;9:446.

    Article  PubMed  PubMed Central  Google Scholar 

  282. Zhou JY, Thaiboonrod S, Fang JH, Cao SM, Miao M, Feng X. In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Res. 2022;15:8536.

    Article  CAS  ADS  Google Scholar 

  283. Huang JZ, Li JY, Xu XX, Hua L, Lu ZQ. In situ loading of polypyrrole onto aramid nanofiber and carbon nanotube aerogel fibers as physiology and motion sensors. ACS Nano. 2022;16:8161.

    Article  CAS  PubMed  Google Scholar 

  284. Schwarz A, Hakuzimana J, Kaczynska A, Banaszczyk J, Westbroek P, McAdams E, Moody G, Chronis Y, Priniotakis G, De Mey G, Tseles D, Van Langenhove L. Gold coated para-aramid yarns through electroless deposition. Surf Coat Technol. 2010;204:1412.

    Article  CAS  Google Scholar 

  285. Hazarika A, Deka BK, Kim D, Park YB, Park HW. Microwave-induced hierarchical iron-carbon nanotubes nanostructures anchored on polypyrrole/graphene oxide-grafted woven Kevlar (R) fiber. Compos Sci Technol. 2016;129:137.

    Article  CAS  Google Scholar 

  286. Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon. 2001;39:279.

    Article  CAS  Google Scholar 

  287. Chung DDL. Materials for electromagnetic interference shielding. Mater Chem Phys. 2020;255: 123587.

    Article  CAS  ADS  Google Scholar 

  288. Shukla AK, Nirmala S, editors. EMI/EMC for military aircraft and its challenges. In: 2006 9th International Conference on Electromagnetic Interference and Compatibility (INCEMIC 2006), 2006 23–24 Feb. 2006.

  289. Tang JB, Zhang X, Wang J, Zou RQ, Wang LJ. Achieving flexible and durable electromagnetic interference shielding fabric through lightweight and mechanically strong aramid fiber wrapped in highly conductive multilayer metal. Appl Surf Sci. 2021;565: 150577.

    Article  CAS  Google Scholar 

  290. Zhang X, Tang JB, Zhong Y, Feng YJ, Wei XP, Li MY, Wang J. Asymmetric layered structural design with metal microtube conductive network for absorption-dominated electromagnetic interference shielding. Colloid Surf A. 2022;643: 128781.

    Article  CAS  Google Scholar 

  291. Peng YC, Cui Y. Advanced textiles for personal thermal management and energy. Joule. 2020;4:724.

    Article  CAS  Google Scholar 

  292. Kong LB, Wang ZY, Kong XF, Wang L, Ji ZY, Wang XM, Zhang X. Large-scale fabrication of form-stable phase change nanotube composite for photothermal/electrothermal energy conversion and storage. ACS Appl Mater Interfaces. 2021;13:29965.

    Article  CAS  PubMed  Google Scholar 

  293. Wang XF, Lei ZW, Ma XD, He GF, Xu T, Tan J, Wang LL, Zhang XS, Qu LJ, Zhang XJ. A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater. Chem Eng J. 2022;430: 132605.

    Article  CAS  Google Scholar 

  294. Wei ZM, Zhang QC, Wang LH, Peng ML, Wang XJ, Long SR, Yang J. The preparation and adsorption properties of electrospun aramid nanofibers. J Polym Sci Part B. 2012;50:1414.

    Article  CAS  Google Scholar 

  295. Fan YY, Li ZH, Wei JC. Application of aramid nanofibers in nanocomposites: a brief review. Polymers. 2021;13:3071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Yang M, Cao KQ, Sui L, Qi Y, Zhu J, Waas A, Arruda EM, Kieffer J, Thouless MD, Kotov NA. Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano. 2011;5:6945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Lu ZQ, Si LM, Dang WB, Zhao YS. Transparent and mechanically robust poly (para-phenylene terephthalamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers. Compos Part A. 2018;115:321.

    Article  CAS  Google Scholar 

  298. Yan HC, Li JL, Tian WT, He LY, Tuo XL, Qiu T. A new approach to the preparation of poly(p-phenylene terephthalamide) nanofibers. RSC Adv. 2016;6:26599.

    Article  CAS  ADS  Google Scholar 

  299. Tian WT, Qiu T, Shi YF, He LY, Tuo XL. The facile preparation of aramid insulation paper from the bottom-up nanofiber synthesis. Mater Lett. 2017;202:158.

    Article  CAS  Google Scholar 

  300. Xie CJ, He LY, Shi YF, Guo ZX, Qiu T, Tuo XL. From monomers to a lasagna-like aerogel monolith: an assembling strategy for aramid nanofibers. ACS Nano. 2019;13:7811.

    Article  CAS  PubMed  Google Scholar 

  301. Xie CJ, Qiu T, Li JL, Zhang HL, Li XY, Tuo XL. Nanoaramid dressed latex particles: the direct synthesis via pickering emulsion polymerization. Langmuir. 2017;33:8043.

    Article  CAS  PubMed  Google Scholar 

  302. Li JL, Tian WT, Yan HC, He LY, Tuo XL. Preparation and performance of aramid nanofiber membrane for separator of lithium ion battery. J Appl Polym Sci. 2016;133:43623.

    Article  Google Scholar 

  303. Lin JJ, Bang SH, Malakooti MH, Sodano HA. Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites. ACS Appl Mater Interfaces. 2017;9:11167.

    Article  CAS  PubMed  Google Scholar 

  304. Pan XF, Gao HL, Wu KJ, Chen SM, He T, Lu Y, Ni Y, Yu SH. Nacreous aramid-mica bulk materials with excellent mechanical properties and environmental stability. Iscience. 2021;24: 101971.

    Article  CAS  PubMed  ADS  Google Scholar 

  305. Kwon SR, Elinski MB, Batteas JD, Lutkenhaus JL. Robust and flexible aramid nanofiber/graphene layer-by-layer electrodes. ACS Appl Mater Interfaces. 2017;9:17126.

    Article  Google Scholar 

  306. Vu MC, Mani D, Jeong TH, Kim JB, Lim CS, Kang H, Islam MA, Lee OC, Park PJ, Kim SR. Nacre-inspired nanocomposite papers of graphene fluoride integrated 3D aramid nanofibers towards heat-dissipating applications. Chem Eng J. 2022;429: 132182.

    Article  CAS  Google Scholar 

  307. Tang W, Fu SR, Luo NA, Fu Q, Chen F. para-Aramid nanofiber membranes for high-performance and multifunctional materials. ACS Appl Nano Mater. 2022;5:747.

    Article  CAS  Google Scholar 

  308. Guan Y, Li W, Zhang YL, Shi ZQ, Tan J, Wang F, Wang YH. Aramid nanofibers and poly (vinyl alcohol) nanocomposites for ideal combination of strength and toughness via hydrogen bonding interactions. Compos Sci Technol. 2017;144:193.

    Article  CAS  Google Scholar 

  309. Zhang B, Wang WC, Tian M, Ning NY, Zhang LQ. Preparation of aramid nanofiber and its application in polymer reinforcement: a review. Eur Polym J. 2020;139: 109996.

    Article  CAS  Google Scholar 

  310. Park B, Lee W, Lee E, Min SH, Kim BS. Highly tunable interfacial adhesion of glass fiber by hybrid multilayers of graphene oxide and aramid nanofiber. ACS Appl Mater Interfaces. 2015;7:3329.

    Article  CAS  PubMed  Google Scholar 

  311. Zhao GD, Zhao HJ, Shi L, Cheng BW, Xu XL, Zhuang XP. In situ loading MnO2 onto 3D aramid nanofiber aerogel as high-performance lead adsorbent. J Colloid Interface Sci. 2021;600:403.

    Article  CAS  PubMed  ADS  Google Scholar 

  312. Yang B, Ding XY, Zhang MY, Wang L, Huang X. A flexible, strong, heat- and water-resistant zeolitic imidazolate framework-8 (ZIF-8)/aramid nanofibers (ANFs) composite nanopaper. Compos Commun. 2020;17:192.

    Article  Google Scholar 

  313. Wang L, Zhang MY, Yang B, Tan JJ, Ding XY. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano. 2020;14:10633.

    Article  CAS  PubMed  Google Scholar 

  314. Wang J, Lin YK, Mohamed A, Ji QM, Jia HB. High strength and flexible aramid nanofiber conductive hydrogels for wearable strain sensors. J Mater Chem C. 2021;9:575.

    Article  CAS  Google Scholar 

  315. Peng G, Wu YQ, Sun CM, Ji CN, Zhang Y, Qu RJ, Wang Y. Preparation and properties of PVC-based ultrafiltration membrane reinforced by in-situ synthesized p-aramid nanoparticles. J Membr Sci. 2022;642: 119993.

    Article  CAS  Google Scholar 

  316. Wei HW, Wang MQ, Zheng WH, Jiang ZX, Huang YD. 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceram Int. 2020;46:6199.

    Article  CAS  Google Scholar 

  317. Xu KL, Zhan L, Yan R, Ke QF, Yin AL, Huang C. Enhanced air filtration performances by coating aramid nanofibres on a melt-blown nonwoven. Nanoscale. 2022;14:419.

    Article  CAS  PubMed  Google Scholar 

  318. Liu YH, Zhang KY, Mo YL, Zhu L, Yu BW, Chen F, Fu Q. Hydrated aramid nanofiber network enhanced flexible expanded graphite films towards high EMI shielding and thermal properties. Compos Sci Technol. 2018;168:28.

    Article  CAS  Google Scholar 

  319. Xie F, Jia FF, Zhuo LH, Lu ZQ, Si LM, Huang JZ, Zhang MY, Ma Q. Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale. 2019;11:23382.

    Article  CAS  PubMed  Google Scholar 

  320. Lei CX, Zhang YZ, Liu DY, Wu K, Fu Q. Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl Mater Interfaces. 2020;12:26485.

    Article  CAS  PubMed  Google Scholar 

  321. Mao YQ, Sun W, Qiao YX, Liu X, Xu CM, Fang L, Hou WS, Wang ZH, Sun KN. A high strength hybrid separator with fast ionic conductor for dendrite-free lithium metal batteries. Chem Eng J. 2021;416: 129119.

    Article  CAS  Google Scholar 

  322. Yin JY, Xu X, Jiang S, Wu HH, Wei L, Li YD, He JP, Xi K, Gao YF. High ionic conductivity PEO-based electrolyte with 3D framework for Dendrite-free solid-state lithium metal batteries at ambient temperature. Chem Eng J. 2022;431: 133352.

    Article  CAS  Google Scholar 

  323. Parekh MH, Oka S, Lutkenhaus J, Pol VG. Critical-point-dried, porous, and safer aramid nanofiber separator for high-performance durable lithium-ion batteries. ACS Appl Mater Interfaces. 2022;14:29176.

    Article  CAS  PubMed  Google Scholar 

  324. Xia GM, Zhou QW, Xu Z, Zhang JM, Zhang J, Wang J, You JH, Wang YH, Nawaz H. Transparent cellulose/aramid nanofibers films with improved mechanical and ultraviolet shielding performance from waste cotton textiles by in-situ fabrication. Carbohydr Polym. 2021;273: 118569.

    Article  CAS  PubMed  Google Scholar 

  325. Yang SX, Xie CJ, Qiu T, Tuo X. The aramid-coating-on-aramid strategy toward strong, tough, and foldable polymer aerogel films. ACS Nano. 2022;16:14334.

    Article  CAS  PubMed  Google Scholar 

  326. Wu JP, Pang HM, Ding L, Wang Y, He XK, Shu QA, Xuan SH, Gong XL. A lightweight, ultrathin aramid-based flexible sensor using a combined inkjet printing and buckling strategy. Chem Eng J. 2021;421: 129830.

    Article  CAS  Google Scholar 

  327. Liu JW, Wang JN, Zhu L, Chen X, Ma QY, Wang L, Wang X, Yan W. A high-safety and multifunctional MOFs modified aramid nanofiber separator for lithium-sulfur batteries. Chem Eng J. 2021;411: 128540.

    Article  CAS  Google Scholar 

  328. Li Y, Yuan SS, Zhou C, Zhao Y, Van der Bruggen B. A high flux organic solvent nanofiltration membrane from Kevlar aramid nanofibers with in situ incorporation of microspheres. J Mater Chem A. 2018;6:22987.

    Article  CAS  Google Scholar 

  329. Wang J, Ma XY, Zhou JL, Du FL, Teng C. Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with Joule heating performance. ACS Nano. 2022;16:6700.

    Article  CAS  PubMed  Google Scholar 

  330. Chen SQ, Wang YD, Fei B, Long HF, Wang T, Zhang TH, Chen L. Development of a flexible and highly sensitive pressure sensor based on an aramid nanofiber-reinforced bacterial cellulose nanocomposite membrane. Chem Eng J. 2022;430: 131980.

    Article  CAS  Google Scholar 

  331. Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104:4271.

    Article  CAS  PubMed  Google Scholar 

  332. Whittingham MS. Electrical energy storage and intercalation chemistry. Science. 1976;192:1126.

    Article  CAS  PubMed  ADS  Google Scholar 

  333. Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144:1188.

    Article  CAS  Google Scholar 

  334. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mat. 2010;22:587.

    Article  CAS  Google Scholar 

  335. Yoshino A. The birth of the lithium-ion battery. Angew Chem Int Ed. 2012;51:5798.

    Article  CAS  Google Scholar 

  336. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359.

    Article  CAS  PubMed  ADS  Google Scholar 

  337. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 2008;3:31.

    Article  CAS  PubMed  ADS  Google Scholar 

  338. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2012;11:19.

    Article  CAS  ADS  Google Scholar 

  339. Wang MQ, Wang CN, Fan ZM, Wu GY, Liu L, Huang YD. Aramid nanofiber-based porous membrane for suppressing dendrite growth of metal-ion batteries with enhanced electrochemistry performance. Chem Eng J. 2021;426: 131924.

    Article  CAS  Google Scholar 

  340. Tung SO, Fisher SL, Kotov NA, Thompson LT. Nanoporous aramid nanofibre separators for nonaqueous redox flow batteries. Nat Commun. 2018;9:4193.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  341. He LY, Qiu T, Xie CJ, Tuo XL. A phase separation method toward PPTA-polypropylene nanocomposite separator for safe lithium ion batteries. J Appl Polym Sci. 2018;135:46697.

    Article  Google Scholar 

  342. Tung SO, Ho S, Yang M, Zhang RL, Kotov NA. A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat Commun. 2015;6:6152.

    Article  CAS  PubMed  ADS  Google Scholar 

  343. Vandezande P, Gevers LEM, Vankelecom IFJ. Solvent resistant nanofiltration: separating on a molecular level. Chem Soc Rev. 2008;37:365.

    Article  CAS  PubMed  Google Scholar 

  344. Kim SS, Jung D, Choi UH, Lee J. Antimicrobial m-aramid nanofibrous membrane for nonpressure driven filtration. Ind Eng Chem Res. 2011;50:8693.

    Article  CAS  Google Scholar 

  345. Ji HL, Zhang GW, Teng L, Xing JL, Jia XY, Luo HY, Shen SS, Zhou XJ, Liu DP, Wyman I. Fabrication of aramid-coated asymmetric PVDF membranes towards acidic and alkaline solutions concentration via direct contact membrane distillation. Appl Surf Sci. 2021;562: 150185.

    Article  CAS  Google Scholar 

  346. Huang FW, Yang QC, Jia LC, Yan DX, Li ZM. Aramid nanofiber assisted preparation of self-standing liquid metal-based films for ultrahigh electromagnetic interference shielding. Chem Eng J. 2021;426: 131288.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 52373085), Natural Science Foundation of Hubei Province (No. 2023AFB828) Innovative Team Program of Natural Science Foundation of Hubei Province (No. 2023AFA027), Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University (No. DTL 2022006), National Engineering Laboratory for Modern Silk, Soochow University (No. SDGC2148), and National Local Joint Laboratory for Advanced Textile Processing and Clean Production (No. 17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxiang Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, A., Xing, T., Liang, Z. et al. Advanced Aramid Fibrous Materials: Fundamentals, Advances, and Beyond. Adv. Fiber Mater. 6, 3–35 (2024). https://doi.org/10.1007/s42765-023-00332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00332-1

Keywords

Navigation