Skip to main content

Advertisement

Log in

Identification of Different Lipopeptides Isoforms Produced by Bacillus mojavensis BI2 and Evaluation of Their Surface Activities for Potential Environmental Application

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Six clusters of Lipopeptides Isoforms belonging to Cyclic and Linear Surfactin and Fengycin A and B Families were identified from a newly identified strain identified as B. mojavensis BI2. Purification by anionic exchange chromatography and Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) and identification by High Performance Liquid Chromatography-Mass Spectroscopy (HPLC-MS) analyses were applied to characterize lipopeptides biosurfactants derived from B. mojavensis BI2. The m/z values of Cyclic and Linear homologues of Surfactin ranged from 980 and 1096 Da. The m/z values of cyclic homologues of Fengycin A and Fengycin B ranged from 1449 and 1505 Da. The m/z values of linear homologues of Fengycin A and Fengycin B ranged from 1467 and 1523 Da. Functional properties of the BI2 lipopeptides revealed a powerful surface activity with the capacity to decrease the surface tension of water to about 27.4 mN/m and a Critical Micelle Concentration (CMC) value of 200 mg/L along with great efficiency when compared to chemical surfactants (Triton X100; CTAB and SDS). Additionally, similarly to chemical surfactants, they exhibited similar foaming and oil dispersing activities. Interestingly, lipopeptides isoforms are characterized by non-phytotoxicity with potential fertilizing effect. All these functional properties offer potential application of these lipopeptides in bioremediation of contaminated water.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data sets supporting the conclusions of this article are included in the article.

Abbreviations

BI2 BioS:

Biosurfactant produced by Bacillus mojavensis BI2

References

  1. Balan SS, Kumar G, Jayalakshmi S (2017) Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar: Purification, characterization and its biological evaluation. Microbiol Res 194:1–9

    Article  CAS  PubMed  Google Scholar 

  2. Bartal A, Vigneshwari A, Bóka B, Vörös M, Takács I, Kredics L, Manczinger L, Varga M, Vágvölgyi C, Szekeres A (2018) Effects of Different Cultivation Parameters on the Production of Surfactin Variants by a Bacillus subtilis Strain. Molecules 23(10):2675

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bechard J, Eastwell K, Sholberg P, Mazza G, Skura B (1998) Isolation and partial chemical characterization of an antimicrobial peptide produced by a strain of Bacillus subtilis. J Agric Food Chem 46:5355–5361

    Article  CAS  Google Scholar 

  4. Ben Ayed H, Hmidet N, Béchet M, Chollet M, Chataigné G, Leclère V, Jacques P, Nasri M (2014) Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochem 49(10):1699–1707

    Article  CAS  Google Scholar 

  5. Bouassida M, Fourati N, Ghazala I, Ellouze-Chaabouni S, Ghribi D (2018) Potential application of Bacillus subtilis SPB1 biosurfactants in laundry detergent formulations: Compatibility study with detergent ingredients and washing Performance. Eng Life Sci 18:70–77

    Article  CAS  PubMed  Google Scholar 

  6. Bouassida M, Fourati N, Krichen F, Zouari R, Ellouz Chaabouni S, Ghribi D (2017) Potential application of Bacillus subtilis SPB1 lipopeptides in toothpaste formulation. J Adv Res. https://doi.org/10.1016/j.jare.2017.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  7. Camacho-Chab JC, Guézennec J, Chan-Bacab MJ, Ríos-Leal E, Sinquin C, Muñiz-Salazar R, De la Rosa-García SC, Reyes-Estebanez M, Ortega-Morales BO (2013) Emulsifying activity and stability of a non-toxic bioemulsifier synthesized by Microbacteriumsp. MC3B-10. Int J Mol Sci 14(9):18959–18972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chandankere R, Yao J, Cai M, Choi MMF (2014) Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 122:140–148

    Article  CAS  Google Scholar 

  9. Chandran P, Das N (2010) Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. Int J Eng Sci Technol 2:6942–6953

    Google Scholar 

  10. Da Silva RS, Almeida D, Brasileiro P, Rufino R, Luna J, Sarubbo L (2017) Biosurfactant Formulation of Pseudomonas cepacia and Application in the Removal of Oil from Coral Reef. Chem Eng Trans 57:649–654

    Google Scholar 

  11. De Almeida DG, Da Silva Soares, RdCF Luna JM, Rufino RD, Santos VA, Banat IM, Sarubbo LA (2016) Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol 7:1718

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Faria AF, Ste´fani D, Vaz BG, Silva IS, Garcia JS, Eberlin MN, Grossman MJ, Alves OL, Durrant LR, (2011) Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol. J Ind Microbiol Biotechnol 38:863–871

    Article  PubMed  Google Scholar 

  13. de Sousa T, Bhosle S (2012) Isolation and characterization of a lipopeptide bioemulsifier produced by Pseudomonas nitroreducens TSB.MJ10 isolated from a mangrove ecosystem. Bioressoure Technology 123:256–262

    Article  Google Scholar 

  14. De Souza SHB, de Luna JM, Rufino RD, Sarubbo L (2013) Assessment of toxicity of a biosurfactant from Candida sphaerica UCP 0995 cultivated with industrial residues in a bioreactor. Electron J Biotechnol. https://doi.org/10.2225/vol16-issue4

    Article  Google Scholar 

  15. Diniz Rufino R, Moura de Luna J, de Campos Takaki GM, Asfora Sarubbo L (2014) Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron J Biotechnol 17:6–6

    Google Scholar 

  16. Dubey KV, Juwarkar AA, Singh SK (2005) Adsorption-desorption process using wood-based activated carbon for recovery of biosurfactant from fermented distillery wastewater. Biotechnol Prog 21:860–867

    Article  CAS  PubMed  Google Scholar 

  17. Durval IJB, Resende AHM, Figueiredo MA, Luna JM, Rufino RD, Sarubbo LA (2019) Studies on biosurfactants produced using Bacillus cereus isolated from seawater with biotechnological potential for marine oil-spill bioremediation. J Surfactants Detergents 22:349–363

    Article  CAS  Google Scholar 

  18. Feng J-Q, Gang H-Z, Li D-S, Liu J-F, Yang S-Z, Mu B-Z (2019) Characterization of biosurfactant lipopeptide and its performance evaluation for oil-spill remediation. RSC Adv 9:9629–9632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Freitas BG, Brito JM, Brasileiro PP, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Formulation of a commercial biosurfactant for application as a dispersant of petroleum and by-products spilled in oceans. Front Microbiol 7:1646

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gayathiri E, Prakash P, Karmegam N, Varjani S, Awasthi MK, Ravindran B (2022) Biosurfactants: Potential and Eco-Friendly Material for Sustainable Agriculture and Environmental Safety—A Review. Agronomy 12:662

    Article  CAS  Google Scholar 

  21. Ghazala I, Bouallegue A, Haddar A, Chaabouni ES (2018) Characterization and production optimization of biosurfactants by Bacillus mojavensis I4 with biotechnological potential for microbial enhanced oil recovery. Biodegradation 30(5):235–245

    PubMed  Google Scholar 

  22. Ghazala I, Bouassida M, Krichen F, Manuel Benito J, Ellouz-Chaabouni S, Haddar A (2017) Anionic lipopeptides from Bacillus mojavensis I4 as effective antihypertensive agents: Production, characterization, and identification. Eng Life Sci 17:1244–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gong A-D, Li H-P, Yuan Q-S, Song X-S, Yao W, He W-J, Zhang J-B, Liao Y-C (2015) Antagonistic Mechanism of Iturin A and Plipastatin A from Bacillus amyloliquefaciens S76–3 from Wheat Spikes against Fusarium graminearum. PLoS One 10(2):e0116871. https://doi.org/10.1371/journal.pone.0116871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grote M, Bernem C, Böhme B, Callies U, Calvez I, Christie B, Colcomb K, Damian H-P, Farkeh H, Gräbsch C, Hunt A, Höfer T, Knaack J, Kraus U, Le Floch S, Le Lann G, Leuchs H, Nagel A, Wahrendorfl D-S (2018) The potential for dispersant use as a maritime oil spill response measure in German waters. Marine Pollution Bulletin 129(2):623–632

    Article  CAS  PubMed  Google Scholar 

  25. Guodong Q, Yupeng Z, Xuhe R, Jie C (2015) Research on Development and Effectiveness Evaluation Technology of New Environment-friendly Oil Spill Dispersant. Aquatic Procedia 3:245–253

    Article  Google Scholar 

  26. Habib S, Ahmad SA, Wan Johari WL, AbdShukor MY, Alias SA, Smykla J, Saruni NH, Abdul Razak NS, Yasid NA (2020) Production of Lipopeptide Biosurfactant by a Hydrocarbon-Degrading Antarctic Rhodococcus. Int J Mol Sci 21:6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hentati D, Chebbi A, Hadrich F, Frikha I, Rabanal F, Sayadi S, Manresa A, Chamkha M (2019) Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericusstrain FLU5. Ecotoxicol Environ Safety 167:441–449

    Article  CAS  PubMed  Google Scholar 

  28. Hue N, Serani L, Laprévote O (2001) Structural investigation of cyclic peptidolipids from Bacillus subtilis by high-energy tandem mass spectrometry. Rapid Commun Mass Spectrom 15(3):203–209

    Article  CAS  PubMed  Google Scholar 

  29. Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Soberón Chávez G (ed) Biosurfactants. Springer-Verlag, Berlin, pp 57–91

    Chapter  Google Scholar 

  30. Jemil N, Ayed HB, Hmidet N, Nasri M (2016) Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon. World J Microbiol 32:175

    Article  Google Scholar 

  31. Jemil N, Manresa A, Rabanal F, Ben Ayed H, Hmidet N, Nasri M (2017) Structural characterization and identification of cyclic lipopeptides produced by Bacillus methylotrophicusDCS1 strain. J Chromatogr B 1060:374–386

    Article  CAS  Google Scholar 

  32. Jemil N, Hmidet N, Manresa A, Rabanal F, Nasri M (2018) Isolation and characterization of kurstakin and surfactin isoforms produced by Enterobacter cloacae C3 strain. J Mass Spectrom 54(1):7–18

    Article  Google Scholar 

  33. Kecskeméti A, Bartal A, Bóka B, Kredics L, Manczinger L, Shine K, Alharby NS, Khaled JM, Varga M, Vágvölgyi C, Szekeres A (2018) High-Frequency Occurrence of Surfactin Monomethyl Isoforms in the Ferment Broth of a Bacillus subtilis Strain Revealed by Ion Trap Mass Spectrometry. Molecules 23:2224. https://doi.org/10.3390/molecules23092224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci 112:14900–14905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Landy M, Warren G, RosenmanM S, Colio L, Medicine, (1948) Bacillomycin: an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol 67:539–541

    Article  CAS  PubMed  Google Scholar 

  36. Lechuga M, Fernández-Serrano M, Jurado E, Núñez-Olea J, Ríos F (2016) Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicol Environ Safety 125:1–8

    Article  CAS  PubMed  Google Scholar 

  37. Lémery E, Briançon S, Chevalier Y, Bordes C, Oddos T, Gohier A, Bolzinger M-A (2015) Skin toxicity of surfactants: Structure/toxicity relationships. Colloids Surf A 469:166–179

    Article  Google Scholar 

  38. Lin L-Z, Zheng Q-W, Wei T, Zhang Z-Q, Zhao C-F, Zhong H, Xu Q-Y, Lin J-F, Guo L-Q (2020) Isolation and Characterization of Fengycins Produced by Bacillus amyloliquefaciens JFL21 and Its Broad-Spectrum Antimicrobial Potential Against Multidrug-Resistant Food borne Pathogens. Front Microbiol. https://doi.org/10.3389/fmicb.2020.579621

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu J-F, Mbadinga SM, Yang S-Z, Gu J-D, Mu B-Z (2015) Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 16:4814–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liwarska-Bizukojc E, Urbaniak M (2007) Evaluation of phytotoxic effect of wastewater contaminated with anionic surfactants. Biotechnology 1(76):203–214

    Google Scholar 

  41. Luna JM, Rufino RD, Sarubbo LA, Campos-Takaki GM (2013) Characterization, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf B 102:202–209

    Article  CAS  Google Scholar 

  42. Ma Y, Kong Q, Qin C, Chen Y, Chen Y, Lv R, Zhou G (2016) Identification of lipopeptides in Bacillus megaterium by two-step ultrafiltration and LC–ESI–MS/MS. AMB Express 6:79

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mędrzycka K, Hallmann E, Pastewski S (2009) Evaluation of surfactant and biosurfactant mixture usefulness in oil removal from soil, based on physicochemical studies and flushing experiments. Environ Prot Eng 35(3):191–205

    Google Scholar 

  44. Mnif I, Besbes S, Ellouze-Ghorbel R, Ellouze-Chaabouni S, Ghribi D (2013b) Improvement of bread dough quality by Bacillus subtilis SPB1 biosurfactant addition: optimized extraction using response surface methodology. J Sci Food Agric 93:3055–3064

    Article  CAS  PubMed  Google Scholar 

  45. Mnif I, Bouallegue A, Bouassida M, Ghribi D (2021) Surface properties and heavy metals chelation of lipopeptides biosurfactants produced from date flour by Bacillus subtilis ZNI5: optimized production for application in bioremediation. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-021-02635-2

    Article  PubMed  Google Scholar 

  46. Mnif I, Bouallegue A, Mekki S, Ghribi D (2022a) Valorization of date juice by the production of lipopeptide biosurfactants by a Bacillus mojavensis BI2 strain: bioprocess optimization by response surface methodology and study of surface activities. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-021-02606-7

    Article  PubMed  Google Scholar 

  47. Mnif I, Ellouze-Chaabouni S, Ayedi Y, Ghribi D (2014) Treatment of diesel-and kerosene-contaminated water by B. subtilis SPB1 biosurfactant-producing strain. Water Environ Res 86:707–716

    Article  CAS  PubMed  Google Scholar 

  48. Mnif I, Ellouze-Chaabouni S, Ghribi D (2013a) Economic production of Bacillus subtilis SPB1 biosurfactant using local agro-industrial wastes and its application in enhancing solubility of diesel. J Chem Technol Biotechnol 88:779–787

    Article  CAS  Google Scholar 

  49. Mnif I, Fendri R, Ghribi D (2015b) Malachite green bioremoval by a newly isolated strain Citrobacter sedlakii RI11; enhancement of the treatment by biosurfactant addition. Water Sci Technol 72(8):1283–1293

    Article  CAS  PubMed  Google Scholar 

  50. Mnif I, Fendri R, Ghribi D (2015c) Biosorption of Congo Red from aqueous solution by Bacillus weihenstephanensis RI12; effect of SPB1 biosurfactant addition on biodecolorization potency. Water Sci Technol 72(6):865–874

    Article  CAS  PubMed  Google Scholar 

  51. Mnif I, Ghribi D (2015a) Microbial derived surface active compounds: properties and screening concept. World J Microbiol Biotechnol 31:1001–1020

    Article  CAS  PubMed  Google Scholar 

  52. Mnif I, Ghribi D (2015b) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Pept Sci 104:129–147

    Article  CAS  Google Scholar 

  53. Mnif I, Ghribi D (2015c) Title: Lipopeptide surfactants: Production, Recovery and Pore Forming Capacity. Peptides 71:100–112

    Article  Google Scholar 

  54. Mnif I, Grau-Campistany A, Coronel-León J, Hammami I, Triki MA, Manresa A, Ghribi D (2016a) Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ Sci Pollut Res 23:6690–6699

    Article  CAS  Google Scholar 

  55. Mnif I, Maktouf S, Fendri R, Kriaa M, Ellouze S, Ghribi D (2016b) Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition. Environ Sci Pollut Res 23(2):1742–1754

    Article  CAS  Google Scholar 

  56. Mnif I, Mnif S, Sahnoun R, Maktouf S, Ayedi Y, Ellouze-Chaabouni S, Ghribi D (2015a) Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-015-4488-5

    Article  Google Scholar 

  57. Mnif I, Rajhi H, Bouallegue A, Trabelsi N, Ghribi D (2022b) Characterization of Lipopeptides Biosurfactants Produced by a Newly Isolated Strain Bacillus subtilis ZNI5: Potential Environmental Application. J Poly Environ. https://doi.org/10.1007/s10924-021-02361-6

    Article  Google Scholar 

  58. Mnif I, Sahnoun R, Ellouz-Chaabouni S, Ghribi D (2017) Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Saf Environ Prot 109:72–81

    Article  CAS  Google Scholar 

  59. Mnif I, Sahnoun R, Ellouze-Chaabouni S, Ghribi D (2013a): Evaluation of B. subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design. Environmental Science and Pollution Research DOI https://doi.org/10.1007/s11356-013-1894-

  60. Moldes A, Vecino X, Rodríguez-López L, Rincón-Fontán M, Cruz JM (2020): Chapter 8-Biosurfactants: the use of biomolecules in cosmetics and detergents. New and Future Developments in Microbial Biotechnology and Bioengineering; Microbial Biomolecules: Properties, Relevance, and their Translational Applications 2020, Pages 163-185

  61. Mouafi FE, Abo Elsoud MM, Moharam ME (2016) Optimization of biosurfactant production by Bacillus brevis using response surface methodology. Biotechnol Rep 9:31–37

    Article  Google Scholar 

  62. Negin C, Ali S, Xie Q (2017) Most common surfactants employed in chemical enhanced oil recovery. Petroleum 3:197–211

    Article  Google Scholar 

  63. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  PubMed  PubMed Central  Google Scholar 

  64. Patel S, Kharawala K (2022) Biosurfactants and Their Biodegradability: A Review and Examination. Int J Eng Adv Technol 11(3):4–11

    Article  Google Scholar 

  65. Pastewski S, Hallmanne E, Medrzycka K (2008) Removal of Hydrophobic Organic Pollutants from Soil by Surfactants and Biosurfactants Solutions Flushing. Pol J Environ Stud 16(3):386–391

    Google Scholar 

  66. Pathak KV, Bose A, Keharia H (2014) Characterization of Novel Lipopeptides Produced by Bacillus tequilensis P15 Using Liquid Chromatography Coupled Electron Spray Ionization Tandem Mass Spectrometry (LC–ESI–MS/MS). Int J Pept Res Ther 20:133–143

    Article  CAS  Google Scholar 

  67. Pathak KV, Keharia H, Gupta K, Thakur SS, Balaram P (2012) Lipopeptides from the Banyan Endophyte, Bacillus subtilis K1: Mass Spectrometric Characterization of a Library of Fengycins. J Am Soc Mass Spectrom 23:1716–1728

    Article  CAS  PubMed  Google Scholar 

  68. Pereira JFB, Gudiña EJ, Costa R, Vitorino R, Teixeira JA, Coutinho JAP, Rodrigues LR (2013) Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111:259–268

    Article  CAS  Google Scholar 

  69. Phulpoto IA, Yu Z, Hu B, Wang Y, Ndayisenga F, Li J, Liang H, Qazi MA (2020) Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and its potential for oil contaminated soil remediation. Microb Cell Factories. https://doi.org/10.1186/s12934-020-01402-4

    Article  Google Scholar 

  70. Pi G, Mao L, Bao M, Li Y, Gong H, Zhang J (2015) Preparation of oil-in-seawater emulsions based on environmentally benign nanoparticles and biosurfactant for oil spill remediation. ACS Sustain Chem 3:2686–2693

    Article  CAS  Google Scholar 

  71. Popovech M (2017): Analysis of hazards of dispersant constituents and review of toxicological studies. International Oil Spill Conference Proceedings pp. 311-330

  72. Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioressour Technol 99:1589–1595

    Article  CAS  Google Scholar 

  73. Qiao N, Shao Z (2010) Isolation and characterization of a new product by surfactant hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. J Appl Microbiol 108:1207–1216

    Article  CAS  PubMed  Google Scholar 

  74. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    Article  CAS  PubMed  Google Scholar 

  75. Ravindran A, Sajayan A, Priyadharshini GB, Selvin J, Kiran GS (2020) Revealing the Efficacy of Thermostable Biosurfactant in Heavy Metal Bioremediation and Surface Treatment in Vegetables. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00222

    Article  PubMed  PubMed Central  Google Scholar 

  76. Razafindralambo H, Paquot M, Baniel A, Popineau Y, Hbid C, Jacques P, Thonart P (1996) Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. J Am Oil Chem Soc 73(1):149–151

    Article  CAS  Google Scholar 

  77. Rebello S, Asok AK, Mundayoor S, Jisha M (2014) Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett 12:275–287

    Article  CAS  Google Scholar 

  78. Rinallo C, Bennici A, Cenni E (1988) Effects of two surfactants on Triticum durum desf. plantlets. Environ Exp Bot 28:367–374

    Article  CAS  Google Scholar 

  79. Rongsayamanont W, Soonglerdsongpha S, Khondee N, Pinyakong O, Tongcumpou C, Sabatini DA, Luepromchai E (2017) Formulation of crude oil spill dispersants based on the HLD concept and using a lipopeptide biosurfactant. J Hazard Mater 334:168–177

    Article  CAS  PubMed  Google Scholar 

  80. Rufino RD, Luna JM, Takaki GMC, Sarubbo LA (2014) Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron J Biotechnol 17(1):34–38

    Article  Google Scholar 

  81. Silva RDCF, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15:12523–12542

    Article  PubMed Central  Google Scholar 

  82. Sivapathasekaran C, Mukherjee S, Samanta R, Sen R (2009) High-performance liquid chromatography purification of biosurfactant isoforms produced by a marine bacterium. Anal Bioanal Chem 395:845–854

    Article  CAS  PubMed  Google Scholar 

  83. Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68(12):6210–6219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang S, Mulligan CN (2004) Rhamnolipid foam enhanced remediation of cadmium and nickel contaminated soil. Water Air Soil Pollut 157:315–330

    Article  CAS  Google Scholar 

  85. Wang J, Liu J, Wang X, Yao J, Yu Z (2004) Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Lett Appl Microbiol 39:98–102

    Article  CAS  PubMed  Google Scholar 

  86. Wardhani R, Husain DR (2022) Reduction of surface tension of petroleum using hydrocarbon degrading bacterial activity. ASM Sci J 17:1–6

    Article  Google Scholar 

  87. Yang H, Li X, Li X, Yu H, Shen Z (2015) Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Anal Bioanal Chem 407(9):2529–2542

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from the Tunisian Ministry of Higher Education, Scientific Research and Technology. It is a part of a research project on biosurfactant production, characterization and application.

Funding

Funding for this research work was granted by the Ministry of Higher Education and Research of Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

All authors directly participated in the planning, execution, or analysis of this study. All authors read and approved the final manuscript. The first Author IM is an Assistant Teacher in the Faculty of Science of Gabes, University of Gabes, Tunisia and Member of the Laboratory of Biochemistry and Enzymatic Engineering and The Laboratory of Plants Enhancement and Agro-ressources Valorization of the National School of Engineering of Sfax, Tunisia. The Second author RS is a Doctoral Student in the Faculty of Chemistry, University of Barcelona, Spain. The Third Author AB is a Doctoral Student and Member of the Laboratory of Plants Enhancement and Agro-ressources Valorization of the National School of Engineering of Sfax, Tunisia. The Fourth author DG is a Professor in the Higher Institute of Biotechnology of Sfax and member of the Laboratory of Plants Enhancement and Agro-ressources Valorization of the National School of Engineering of Sfax, Tunisia. The Fifth Author FRA is a Professor in the Faculty of Chemistry, University of Barcelona, Spain

Corresponding author

Correspondence to Inès Mnif.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read the final manuscript and approved its submission to Journal of Polymers and The Environment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 81 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnif, I., Segovia, R., Bouallegue, A. et al. Identification of Different Lipopeptides Isoforms Produced by Bacillus mojavensis BI2 and Evaluation of Their Surface Activities for Potential Environmental Application. J Polym Environ 31, 2668–2685 (2023). https://doi.org/10.1007/s10924-022-02752-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02752-3

Keywords

Navigation