Skip to main content
Log in

Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Raw glycerol is a byproduct of biodiesel production that currently has low to negative value for biodiesel producers. One option for increasing the value of raw glycerol is to use it as a feedstock for microbial production. Bacillus subtilis LSFM 05 was used for the production of fengycin in a mineral medium containing raw glycerol as the sole carbon source. Fengycin was isolated by acid precipitation at pH 2 and purified by silica gel column chromatography and characterized using electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) with collision-induced dissociation (CID). The mass spectrum revealed the presence of the ions of m/z 1,435.7, 1,449.9, 1,463.8, 1,477.8, 1,491.8 and 1,505.8, which were further fragmented by ESI-MS/MS. The CID profile showed the presence of a series of ions (m/z 1,080 and 966) and (m/z 1,108 and 994) that represented the different fengycin homologues A and B, respectively. Fengycin homologues A and B are variants that differ at position 6 of the peptide moiety, having either Ala or Val residues, respectively. Mass spectrometry analyses identified four fengycin A and three fengycin B variants with fatty acid components containing 14–17 carbons. These results demonstrate that raw glycerol can be used as feedstock to produce fengycin, and additional work should focus on the optimization of process conditions to increase productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444. doi:10.1007/s00253-010-2589-0

    Article  PubMed  CAS  Google Scholar 

  2. Barros FFC, Ponezi AN, Pastore GM (2008) Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J Ind Microbiol Biotechnol 35:1071–1078. doi:10.1007/s10295-008-0385-y

    Google Scholar 

  3. Benincasa M, Accorsini FR (2008) Pseudomonas aeruginosa LBI production as an process using the wastes from sunflower-oil refining as a substrate. Bioresour Technol 99:3843–3849. doi:10.1016/j.biortech.2007.06.048

    Article  PubMed  CAS  Google Scholar 

  4. Bie X, Lu Z, Lu F (2009) Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. J Microbiol Methods 79:272–278. doi:10.1016/j.mimet.2009.09.013

    Article  PubMed  CAS  Google Scholar 

  5. Brazilian National Agency for Petroleum, Natural Gas and Biofuel (ANP) http://www.anp.gov.br/?pg=46827&m=&t1=&t2=&t3=&t4=&ar=&ps=&cachebust=1303320754755. Accessed in April 2011

  6. Chen L, Wang N, Wang X, Hu J, Wang S (2010) Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresour Technol 101:8822–8827. doi:10.1016/j.biortech.2010.06.054

    Article  PubMed  CAS  Google Scholar 

  7. Chenikher S, Guez JS, Coutte F, Pekpe M, Jacques P, Cassar JP (2010) Control of the specific growth rate of Bacillus subtilis for the production of biosurfactant lipopeptides in bioreactors with foam overflow. Process Biochem 45:1800–1807. doi:10.1016/j.procbio.2010.06.001

    Google Scholar 

  8. Cooper DG, Macdonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    PubMed  CAS  Google Scholar 

  9. da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39. doi:10.1016/j.biotechadv.2008.07.006

    Article  PubMed  Google Scholar 

  10. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64. doi:10.1007/s00253-004-1733-0

    PubMed  CAS  Google Scholar 

  11. Du W, Li W, Sun T, Chen X, Liu D (2008) Perspectives for biotechnological production of biodiesel and impacts. Appl Microbiol Biotechnol 79:331–337. doi:10.1007/s00253-008-1448-8

    Article  PubMed  CAS  Google Scholar 

  12. Fox SL, Bala GA (2000) Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresour Technol 75:235–240. doi:10.1016/S0960-8524(00)00059-6

    Article  CAS  Google Scholar 

  13. Haddad NIA, Wang J, Mu B (2008) Isolation and characterization of a biosurfactant producing strain, Brevibacilis brevis HOB1. J Ind Microbiol Biotechnol 35:1597–1604. doi:10.1007/s10295-008-0403-0

    Article  PubMed  CAS  Google Scholar 

  14. Hu LB, Shi ZQ, Zhang T, Yang ZM (2007) Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol Lett 272:91–98. doi:10.1111/j.1574-6968.2007.00743.x

    Article  PubMed  CAS  Google Scholar 

  15. Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog Sustain Energy 26:338–348. doi:10.1002/ep.10225

    CAS  Google Scholar 

  16. Joshi S, Bharucha C, Desai AJ (2008) Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresour Technol 99:4603–4608. doi:10.1016/j.biortech.2007.07.030

    Article  PubMed  CAS  Google Scholar 

  17. Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi Y-T (2004) Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol 97:942–949. doi:10.1111/j.1365-2672.2004.02356.x

    Article  PubMed  CAS  Google Scholar 

  18. Lee S-C, Kim S-H, Park I-H, Chung S-Y, Chandra MS, Choi Y-L (2010) Isolation, purification, and characterization of novel fengycin S from Bacillus amyloliquefaciens LSC04 degrading-crude oil. Biotechnol Bioprocess Eng 15:246–253. doi:10.1007/s12257-009-0037-8

    Article  CAS  Google Scholar 

  19. Liu X-Y, Yang S-Z, Mu B-Z (2009) Production and characterization of a C15-surfactin-O-methyl ester by a lipopeptide producing strain Bacillus subtilis HSO121. Process Biochem 44:1144–1151. doi:10.1016/j.procbio.2009.06.014

    Article  CAS  Google Scholar 

  20. López EF, Gómez EF (1996) Simultaneous determination of the major organic acids, sugar, glycerol and ethanol by HPLC in grape musts and white wines. J Chromatogr Sci 34:254–257

    Google Scholar 

  21. Makkar RS, Cameotra SS (1999) Biosurfactant production by microorganism on unconventional carbon sources. J Surfact Deterg 2:237–241. doi:10.1007/s11743-999-0078-3

    Article  CAS  Google Scholar 

  22. Makkar RS, Cameotra SS (2001) Synthesis of enhanced biosurfactant by Bacillus subtilis MTCC 2423 at 45°C by foam fractionation. J Surfact Deterg 4:355–357. doi:10.1007/s11743-001-0187-z

    Article  CAS  Google Scholar 

  23. Makkar RS, Cameotra SS (1997) Utilization of molasses for biosurfactant production by two Bacillus strains at the thermophilic conditions. J Am Oil Chem Soc 74:887–889. doi:10.1007/s11746-997-0233-7

    Article  CAS  Google Scholar 

  24. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2007) Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythitol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317T. J Biosci Bioeng 104:78–81. doi:10.1263/jbb.104.78

    Article  PubMed  CAS  Google Scholar 

  25. Nawawi WMFW, Jamal P, Alam Md Z (2010) Utilization of sludge palm oil as a novel substrate for biosurfactant production. Bioresour Technol 101:9241–9247. doi:10.1016/j.biortech.2010.07.024

    Google Scholar 

  26. Nitschke M, Costa SGVAO, Haddad R, Gonçalves LAG, Eberlin MN, Contiero J (2005) Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Prog 21:1562–1566. doi:10.1021/bp050198x

    Article  PubMed  CAS  Google Scholar 

  27. Pabel CT, Vater J, Wilde C, Franke P, Hofemeister J, Adler B, Bringmann G, Hacker J, Hentschel U (2003) Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar Biotechnol 5:424–434. doi:10.1007/s10126-002-0088-8

    Article  PubMed  CAS  Google Scholar 

  28. Pauchauri N, He B (2006) Value-added Utilization of crude glycerol from biodiesel production: a survey of current research activities. American Society of Agricultural and Biological Engineers meeting (ASABE), paper number: 066223, pp 1–16

  29. Pueyo TM, Bloch C Jr, Carmona-Ribeiro MA, di Mascio P (2009) Lipopeptides produced by a soil Bacillus megaterium strain. Microb Ecol 57:367–378. doi:10.1007/s00248-008-9464-x

    Article  PubMed  CAS  Google Scholar 

  30. Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18:1277–1281. doi:10.1007/s00248-008-9464-x

    Article  PubMed  CAS  Google Scholar 

  31. Reis FASL, Sérvulo EFC, de França FP (2004) Lipopeptide surfactant production by Bacillus subtilis grown on low-cost raw materials. Appl Biochem Biotechnol 115:899–912. doi:10.1385/ABAB:115:1-3:0899

    Article  Google Scholar 

  32. Rivaldi JD, Sarrouh BF, da Silva SS (2009) Current research topics in applied microbiology and microbial biotechnology. In: Mendes-Vilas A (ed) Development of biotechnological process using glycerol from biodiesel production. Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007), edn. World Scientific Co. Pte. Ltda, Seville, Spain, pp 429–433

  33. Romero D, de Vicente A, Rakotoaly RH, Dufuor SE, Veening J-W, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, García-Pérez A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440. doi:10.1094/MPMI-20-4-0430

    Article  PubMed  CAS  Google Scholar 

  34. Rooney AP, Price NPJ, Ray KJ, Kuo T-M (2009) Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett 295:82–87. doi:10.1111/j.1574-6968.2009.01581.x

    Article  PubMed  CAS  Google Scholar 

  35. Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin and surfactin. Extremophiles 6:499–506. doi:10.1007/s00792-002-0287-2

    Article  PubMed  CAS  Google Scholar 

  36. Seydlová G, Svobodová J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3:123–133. doi:10.2478/s11536-008-0002-5

    Article  Google Scholar 

  37. Snook ME, Mitchell T, Hinton DM, Bacon CW (2009) Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J Agric Food Chem l57:4287–4292. doi:10.1021/jf900164h

    Article  Google Scholar 

  38. Sun L, Lu Z, Bie X, Lu F, Yang S (2006) Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22:1259–1266. doi:10.1007/s11274-006-9170-0

    Article  CAS  Google Scholar 

  39. Thaniyavarn J, Roongsawang N, Kameyama T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2003) Production and characterization of biosurfactants from Bacillus licheniformis F2.2. Biosci Biotechnol Biochem 67:1239–1244. doi:10.1271/bbb.67.1239

    Article  PubMed  CAS  Google Scholar 

  40. Tsuge K, Ano T, Hirai M, Nakamura Y, Shoda M (1999) The Genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob Agents Chemother 43:2183–2192

    PubMed  CAS  Google Scholar 

  41. Wang J, Liu J, Wang X, Yao J, Yu Z (2004) Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Lett Appl Microbiol 39:98–102. doi:10.1111/j.1472-765X.2004.01547.x

    Article  PubMed  CAS  Google Scholar 

  42. Wei Y-H, Wang l-C, Chen W-C, Chen S-Y (2010) Production and characterization of fengycin by indigenous Bacillus subtilis F29–3 originating from a potato farm. Int J Mol Sci 11:4526–4538. doi:10.3390/ijms11114526

    Article  PubMed  CAS  Google Scholar 

  43. Willke Th, Vorlop K-D (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142. doi:10.1007/s00253-004-1733-0

    Article  PubMed  CAS  Google Scholar 

  44. Zhao Z, Wang Q, Wang K, Brian K, Liu C, Gu Y (2010) Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresour Technol 101:292–297. doi:10.1016/j.biortech.2009.07.071

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from CNPq (National Council for Technological and Scientific Development) and FAPESP (São Paulo State Research Foundation). The authors are grateful to Granol. Ltda – Industrial Unit at Anápolis-Goiás-Brazil, for donating the raw glycerol samples used in the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreia Fonseca de Faria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Faria, A.F., Stéfani, D., Vaz, B.G. et al. Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol. J Ind Microbiol Biotechnol 38, 863–871 (2011). https://doi.org/10.1007/s10295-011-0980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-0980-1

Keywords

Navigation