Skip to main content
Log in

Characterization of Lipopeptides Biosurfactants Produced by a Newly Isolated Strain Bacillus subtilis ZNI5: Potential Environmental Application

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Aiming the production of lipopeptides biosurfactants (BioS), we isolated a new strain identified as Bacillus subtilis ZNI5 from a hydrocarbon contaminated soil. Lipopeptides purification by anionic exchange chromatography and identification by Reverse Phase High Performance Liquid Chromatography–Mass Spectrometry (RP-HPLC–MS) permitted the selection of different homologues divided into four families. The first family corresponds to Surfactin isoforms with molecular weights of 1007, 1021 and 1035 Da; the second family correspond to Iturin isoforms with molecular weights of 1028, 1042 and 1056 Da; the third family correspond to a single isoform called Licheniformin with molecular weight of 1410 and the fourth family correspond to newly identified isoforms named Inesfactin with molecular weights of 973 and 987 Da. Regarding the functional properties of the ZNI5 BioS, it was characterized as a powerful surface-active agent that decreases the Surface Tension of water from 72 mN/m to about 32 mN/m with a CMC value of 350 mg/L more efficient than chemical surfactants (Triton X100; CTAB and SDS). Moreover, it has the capacity to disperse oil to about 80 mm at a concentration of 800 mg/L showing close efficiencies to the listed chemical surfactants. In addition, the physic–chemical characterization of the surface activities of ZNI5 BioS showed great thermal, pH and salts activity and stability enabling its use in the bioremediation fields and for diverse industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data sets supporting the conclusions of this article are included in the article.

Abbreviations

ZNI5 BioS:

Biosurfactant produced by Bacillus subtilis ZNI5

References

  1. Femina Carolin C, Senthil Kumar P, Tsopbou Ngueagni P (2021) A review on new aspects of lipopeptide biosurfactant: types, production, properties and its application in the bioremediation process. J Hazard Mater 407:124827

    Article  CAS  Google Scholar 

  2. Mnif I, Ghribi D (2015) Microbial derived surface active compounds: properties and screening concept. World J Microbiol Biotechnol 31:1001–1020

    Article  CAS  PubMed  Google Scholar 

  3. Mnif I, Ghribi D (2015) High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications. World J Microbiol Biotechnol 31:691–706

    Article  CAS  PubMed  Google Scholar 

  4. Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. J Pept Sci 104:129–147

    Article  CAS  Google Scholar 

  5. Mnif I, Ghribi D (2015) Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides 71:100–112

    Article  CAS  Google Scholar 

  6. Mnif I, Sahnoun R, Ellouze-Chaabouni S, Ghribi D (2013) Evaluation of B. subtilis SPB1 biosurfactants’ potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design. Environ Sci Pollut Res 21:851–861

    Article  CAS  Google Scholar 

  7. Mnif I, Ellouze-Chaabouni S, Ghribi D (2013) Economic production of Bacillus subtilis SPB1 biosurfactant using local agro-industrial wastes and its application in enhancing solubility of diesel. J Chem Technol Biotechnol 88:779–787

    Article  CAS  Google Scholar 

  8. Mnif I, Ellouze-Chaabouni S, Ayedi Y, Ghribi D (2014) Treatment of diesel-and kerosene-contaminated water by B. subtilis SPB1 biosurfactant-producing strain. Water Environ Res 86:707–716

    Article  CAS  PubMed  Google Scholar 

  9. Mnif I, Mnif S, Sahnoun R, Maktouf S, Ayedi Y, Ellouze-Chaabouni S, Ghribi D (2015) Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ Sci Pollut Res 22:14852–14861

    Article  CAS  Google Scholar 

  10. Mnif I, Sahnoun R, Ellouz-Chaabouni S, Ghribi D (2017) Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Saf Environ Prot 109:72–81

    Article  CAS  Google Scholar 

  11. do Amaral Marques NSA, Lima e Silva TA, da Silva Andrade RF, Branco Júnior JF, Okada K, Campos Takaki GM (2017) Lipopeptide biosurfactant produced by Mucor Circinelloides UCP/WFCC 0001 applied in the removal of crude oil and engine oil from soil. Acta Sci 41(1):e38986

    Google Scholar 

  12. Mnif I, Fendri R, Ghribi D (2015) Malachite green bioremoval by a newly isolated strain Citrobacter sedlakii RI11; enhancement of the treatment by biosurfactant addition. J Water Sci Technol 72:1283–1293

    Article  CAS  Google Scholar 

  13. Mnif I, Fendri R, Ghribi D (2015) Biosorption of congo red from aqueous solution by Bacillus weihenstephanensis RI12; effect of SPB1 biosurfactant addition on biodecolorization potency. Water Sci Technol 72:865–874

    Article  CAS  PubMed  Google Scholar 

  14. Mnif I, Maktouf S, Fendri R, Kriaa M, Ellouze S, Ghribi D (2016) Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition. Environ Sci Pollut Res 23:1742–1754

    Article  CAS  Google Scholar 

  15. Bouassida M, Fourati N, Ghazala I, Ellouze-Chaabouni S, Ghribi D (2018) Potential application of Bacillus subtilis SPB1 biosurfactants in laundry detergent formulations: compatibility study with detergent ingredients and washing performance. Eng Life Sci 18:70–77

    Article  CAS  PubMed  Google Scholar 

  16. Mohanty SS, Koul Y, Varjani S, Pandey A, Ngo HH, Chang J-S, Wong JWC, Bui X-T (2021) A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microb Cell Fact. https://doi.org/10.1186/s12934-021-01613-3

    Article  PubMed  PubMed Central  Google Scholar 

  17. Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, Dirisala V, Kodali VP (2018) Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4(3):241–249

    Article  Google Scholar 

  18. Song D, Liang S, Zhang Q, Wang J, Yan L (2013) Development of high efficient and low toxic oil spill dispersants based on sorbitol derivants nonionic surfactants and glycolipid biosurfactants. J Environ Prot 4:16

    Article  CAS  Google Scholar 

  19. Nikolova C, Gutierrez T (2021) Biosurfactants and their applications in the oil and gas industry: current state of knowledge and future perspectives. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.626639

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guodong Q, Yupeng Z, Xuhe R, Jie C (2015) Research on development and effectiveness evaluation technology of new environment-friendly oil spill dispersant. Aquatic Procedia 3:245–253

    Article  Google Scholar 

  21. Pi G, Mao L, Bao M, Li Y, Gong H, Zhang J (2015) Preparation of oil-in-seawater emulsions based on environmentally benign nanoparticles and biosurfactant for oil spill remediation. ACS Sustain Chem 3:2686–2693

    Article  CAS  Google Scholar 

  22. Mnif I, Ellouz-Chaabouni S, Ghribi D (2017) Glycolipid biosurfactants, main classes, functional properties and related potential applications in environmental biotechnology. J Polym Environ 26:2192–2206

    Article  CAS  Google Scholar 

  23. Da Silva RS, Almeida D, Brasileiro P, Rufino R, Luna J, Sarubbo L (2017) Biosurfactant formulation of Pseudomonas cepacia and application in the removal of oil from coral reef. Chem Eng Trans 57:649–654

    Google Scholar 

  24. Sakthipriya N, Kumar G, Agrawal A, Doble M, Sangwai JS (2021) Impact of biosurfactants, surfactin, and rhamnolipid produced from Bacillus subtilis and Pseudomonas aeruginosa, on the enhanced recovery of crude oil and its comparison with commercial surfactants. Energy Fuels 35(12):9883–9893

    Article  CAS  Google Scholar 

  25. Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci USA 112:14900–14905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Popovech M (2017): Analysis of hazards of dispersant constituents and review of toxicological studies, International Oil Spill Conference Proceedings. International Oil Spill Conference, pp. 311–330

  27. Freitas BG, Brito JM, Brasileiro PP, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Formulation of a commercial biosurfactant for application as a dispersant of petroleum and by-products spilled in oceans. Front Microbiol 7:1646

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rongsayamanont W, Soonglerdsongpha S, Khondee N, Pinyakong O, Tongcumpou C, Sabatini DA, Luepromchai E (2017) Formulation of crude oil spill dispersants based on the HLD concept and using a lipopeptide biosurfactant. J Hazard Mater 334:168–177

    Article  CAS  PubMed  Google Scholar 

  29. Mnif I, Bouallegue A, Bouassida M, Ghribi D (2021) Surface properties and heavy metals chelation of lipopeptides biosurfactants produced from date flour by Bacillus subtilis ZNI5: optimized production for application in bioremediation. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-021-02635-2

    Article  PubMed  Google Scholar 

  30. Ghribi D, Abdelkefi-Mesrati L, Mnif I, Kammoun R, Ayadi I, Saadaoui I, Maktouf S, Chaabouni-Ellouze S (2012) Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. J Biomed Biotechnol. https://doi.org/10.1155/2012/373682

    Article  PubMed  PubMed Central  Google Scholar 

  31. Landy M, Warren G, RosenmanM S, Colio L (1948) Bacillomycin: an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol 67:539–541

    Article  CAS  PubMed  Google Scholar 

  32. Bechard J, Eastwell K, Sholberg P, Mazza G, Skura B (1998) Isolation and partial chemical characterization of an antimicrobial peptide produced by a strain of Bacillus subtilis. J Agric Food Chem 46:5355–5361

    Article  CAS  Google Scholar 

  33. Rodrigues L, Teixeira J, Oliveira R (2006) Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochem Eng J 32:135–142

    Article  CAS  Google Scholar 

  34. Ben Ayed H, Jridi M, Maalej H, Nasri M, Hmidet N (2014) Characterization and stability of biosurfactant produced by Bacillus mojavensis A21 and its application in enhancing solubility of hydrocarbon. J Chem Technol Biotechnol 89:1007–1014

    Article  CAS  Google Scholar 

  35. Chen Z, Wu Q, Wang L, Chen S, Lin L, Wang H, Xu Y (2020) Identification and quantification of surfactin, a nonvolatile lipopeptide in Moutai liquor. Int J Food Prop 23:189–198

    Article  CAS  Google Scholar 

  36. Hentati D, Chebbi A, Hadrich F, Frikha I, Rabanal F, Sayadi S, Manresa A, Chamkha M (2019) Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicol Environ Saf 167:441–449

    Article  CAS  PubMed  Google Scholar 

  37. Jemil N, Hmidet N, Manresa A, Rabanal F, Nasri M (2019) Isolation and characterization of kurstakin and surfactin isoforms produced by Enterobacter cloacae C3 strain. J Mass Spectrom 54:7–18

    Article  CAS  PubMed  Google Scholar 

  38. Kecskeméti A, Bartal A, Bóka B, Kredics L, Manczinger L, Shine K, Alharby NS, Khaled JM, Varga M, Vágvölgyi C (2018) High-frequency occurrence of surfactin monomethyl isoforms in the ferment broth of a Bacillus subtilis strain revealed by ion trap mass spectrometry. Molecules 23:2224

    Article  PubMed Central  CAS  Google Scholar 

  39. Mnif I, Grau-Campistany A, Coronel-León J, Hammami I, Triki MA, Manresa A, Ghribi D (2016) Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ Sci Pollut Res 23:6690–6699

    Article  CAS  Google Scholar 

  40. Yang H, Li X, Li X, Yu H, Shen Z (2015) Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Anal Bioanal Chem 407:2529–2542

    Article  CAS  PubMed  Google Scholar 

  41. Gong A-D, Li H-P, Yuan Q-S, Song X-S, Yao W, He W-J, Zhang J-B, Liao Y-C (2015) Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76–3 from wheat spikes against Fusarium graminearum. PLoS ONE 10:e0116871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang Y, Zhang C, Liang J, Wu L, Gao W, Jiang J (2020) Iturin a extracted from Bacillus subtilis WL-2 Affects Phytophthora infestans via cell structure disruption, oxidative stress, and energy supply dysfunction. Front Microbiol 11:2205

    Google Scholar 

  43. Zhao Q, Mei X, Xu Y (2016) Isolation and identification of antifungal compounds produced by Bacillus Y-IVI for suppressing Fusarium wilt of muskmelon. Plant Prot Sci 52:167–175

    Article  CAS  Google Scholar 

  44. Zhou S, Liu G, Zheng R, Sun C, Wu S (2020) Structural and functional insights into iturin W, a novel lipopeptide produced by the deep-sea bacterium Bacillus sp. strain wsm-1. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01597-20

    Article  PubMed  PubMed Central  Google Scholar 

  45. Biria D, Maghsoudi E, Roostaazad R, Dadafarin H, Lotfi AS, Amoozegar M (2010) Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World J Microbiol Biotechnol 26:871–878

    Article  CAS  Google Scholar 

  46. Mnif I, Bouallegue A, Mekki S, Ghribi D (2021) Valorization of date juice by the production of lipopeptide biosurfactants by a Bacillus mojavensis BI2 strain: bioprocess optimization by response surface methodology and study of surface activities. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-021-02606-7

    Article  PubMed  Google Scholar 

  47. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Cao X-H, Liao Z-Y, Wang C-L, Yang W-Y, Lu M-F (2009) Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities. Braz J Microbiol 40:373–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Durval IJB, Resende AHM, Figueiredo MA, Luna JM, Rufino RD, Sarubbo LA (2019) Studies on biosurfactants produced using Bacillus cereus isolated from seawater with biotechnological potential for marine oil-spill bioremediation. J Surfactants Deterg 22:349–363

    Article  CAS  Google Scholar 

  50. Diniz Rufino R, Moura de Luna J, de Campos Takaki GM, Asfora Sarubbo L (2014) Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron J Biotechnol 17:6–6

    CAS  Google Scholar 

  51. Ghazala I, Bouassida M, Krichen F, Manuel Benito J, Ellouz-Chaabouni S, Haddar A (2017) Anionic lipopeptides from Bacillus mojavensis I4 as effective antihypertensive agents: production, characterization, and identification. Eng Life Sci 17:1244–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ghazala I, Bouallegue A, Haddar A, Ellouz-Chaabouni S (2019) Characterization and production optimization of biosurfactants by Bacillus mojavensis I4 with biotechnological potential for microbial enhanced oil recovery. Biodegradation 30:235–245

    Article  CAS  PubMed  Google Scholar 

  53. Jemil N, Ayed HB, Hmidet N, Nasri M (2016) Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon. World J Microbiol 32:175

    Article  CAS  Google Scholar 

  54. Martins PC, Bastos CG, Granjeiro PA, Martins VG (2018) New lipopeptide produced by Corynebacterium aquaticum from a low-cost substrate. Bioprocess Biosyst Eng 41:1177–1183

    Article  CAS  PubMed  Google Scholar 

  55. Purwasena IA, Astuti DI, Syukron M, Amaniyah M, Sugai Y (2019) Stability test of biosurfactant produced by Bacillus licheniformis DS1 using experimental design and its application for MEOR. J Pet Sci Eng 183:106383

    Article  CAS  Google Scholar 

  56. Pathak KV, Keharia H (2014) Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR). Biotechnology 4:41–48

    Google Scholar 

  57. Phulpoto IA, Yu Z, Bowen H, Ndayisenga F, Jinmei L, Liang H, Qazi MA (2020) Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it’s potential for oil contaminated soil remediation. Microb Cell Fact. https://doi.org/10.1186/s12934-020-01402-4

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhu Z, Zhang B, Cai Q, Ling J, Lee K, Chen B (2020) Fish waste based lipopeptide production and the potential application as a bio-dispersant for oil spill control. Front Bioeng Biotechnol 8:734

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ravindran A, Sajayan A, Priyadharshini GB, Selvin J, Kiran GS (2020) Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front Microbiol 11:222

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lechuga M, Fernández-Serrano M, Jurado E, Núñez-Olea J, Ríos F (2016) Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicol Environ Saf 125:1–8

    Article  CAS  PubMed  Google Scholar 

  61. Lémery E, Briançon S, Chevalier Y, Bordes C, Oddos T, Gohier A, Bolzinger M-A (2015) Skin toxicity of surfactants: structure/toxicity relationships. Colloids Surf A 469:166–179

    Article  CAS  Google Scholar 

  62. Rebello S, Asok AK, Mundayoor S, Jisha M (2014) Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett 12:275–287

    Article  CAS  Google Scholar 

  63. Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Biores Technol 99:1589–1595

    Article  CAS  Google Scholar 

  64. De Almeida DG, Da Silva S, RdCF LJM, Rufino RD, Santos VA, Banat IM, Sarubbo LA (2016) Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol 7:1718

    Article  PubMed  PubMed Central  Google Scholar 

  65. Feng J-Q, Gang H-Z, Li D-S, Liu J-F, Yang S-Z, Mu B-Z (2019) Characterization of biosurfactant lipopeptide and its performance evaluation for oil-spill remediation. RSC Adv 9:9629–9632

    Article  CAS  Google Scholar 

  66. Liu J-F, Mbadinga SM, Yang S-Z, Gu J-D, Mu B-Z (2015) Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 16:4814–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Silva RDCF, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15:12523–12542

    Article  PubMed Central  CAS  Google Scholar 

  68. Chandran P, Das N (2010) Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. Int J Eng Sci Technol 2:6942–6953

    Google Scholar 

  69. Qiao N, Shao Z (2010) Isolation and characterization of a new product by surfactant hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. J Appl Microbiol 108:1207–1216

    Article  CAS  PubMed  Google Scholar 

  70. Negin C, Ali S, Xie Q (2017) Most common surfactants employed in chemical enhanced oil recovery. Petroleum 3:197–211

    Article  Google Scholar 

  71. Hewelke E, Szatyłowicz J, Hewelke P, Gnatowski T, Aghalarov R (2018) The impact of diesel oil pollution on the hydrophobicity and CO2 efflux of forest soils. Water Air Soil Pollut. https://doi.org/10.1007/s11270-018-3720-6

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gospodarek J, Rusin M, Barczyk G, Nadgórska-Socha A (2021) The effect of petroleum-derived substances and their bioremediation on soil enzymatic activity and soil invertebrates. Agronomy 11:80

    Article  CAS  Google Scholar 

  73. Ahmed F, Fakhruddin ANMA (2018) Review on environmental contamination of petroleum hydrocarbons and its biodegradation. Int J Environ Sci Nat Res 11(3):63–69

    Google Scholar 

  74. Takashi A, Jin GY, Mizumoto S, Shahedur RM, Okuno K, Shoda M (2009) Solid state fermentation of lipopeptide antibiotic iturin A by using a novel solid state fermentation reactor system. J Environ Sci 21:S162–S165

    Article  Google Scholar 

  75. Ghojavand H, Vahabzadeh F, Mehranian M, Radmehr M, Shahraki KA, Zolfagharian F, Emadi M, Roayaei E (2008) Isolation of thermotolerant, halotolerant, facultative biosurfactant-producing bacteria. Appl Microbiol Biotechnol 80:1073–1085

    Article  CAS  PubMed  Google Scholar 

  76. Thimon L, Peypoux F, Michel G (1992) Interactions of surfactin, a biosurfactant from Bacillus subtilis, with inorganic cations. Biotech Lett 14:713–718

    Article  CAS  Google Scholar 

  77. Huszcza E, Burczyk B (2003) Biosurfactant production by Bacillus coagulans. J Surfact Deterg 6:61–64

    Article  CAS  Google Scholar 

  78. Chen Y, Liu SA, Mou H, Ma Y, Li M, Hu X (2017) Characterization of lipopeptide biosurfactants produced by Bacillus licheniformis MB01 from marine sediments. Front Microbiol 8:871

    Article  PubMed  PubMed Central  Google Scholar 

  79. Karbalaei-Heidari HR, Taghavi L, Hasanizadeh P (2019) Functional evaluation and physicochemical characterization of a lipopeptide biosurfactant produced by the Stenotrophomonas sp. IE-93. Ir J Sci Technol Transact A 43:1447–1455

    Article  Google Scholar 

  80. Kiran GS, Priyadharsini S, Sajayan A, Priyadharsini GB, Poulose N, Selvin J (2017) Production of lipopeptide biosurfactant by a marine Nesterenkonia sp. and its application in food industry. Front Microbiol 8:1138

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zouari O, Lecouturier D, Rochex A, Chataigne G, Dhulster P, Jacques P, Ghribi D (2019) Bio-emulsifying and biodegradation activities of syringafactin producing Pseudomonas spp. strains isolated from oil contaminated soils. Biodegradation 30:259–272

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from the Tunisian Ministry of Higher Education, Scientific Research and Technology. It is a part of a research project on biosurfactant production, characterization and application.

Funding

Funding for this research work was granted by the Ministry of Higher Education and Research of Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

All authors directly participated in the planning, execution, or analysis of this study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Inès Mnif.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read the final manuscript and approved its submission to Journal of Polymers and the Environment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnif, I., Rajhi, H., Bouallegue, A. et al. Characterization of Lipopeptides Biosurfactants Produced by a Newly Isolated Strain Bacillus subtilis ZNI5: Potential Environmental Application. J Polym Environ 30, 2378–2391 (2022). https://doi.org/10.1007/s10924-021-02361-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02361-6

Keywords

Navigation