Skip to main content

Advertisement

Log in

Additive manufacturing of bio-based hydrogel composites: recent advances

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Additive manufacturing (aka 3D printing) has excellent potential for developing advanced materials and technologies, and it’s extensively been explored in several areas such as tissue engineering, cancer research, multifunctional devices, surgical preparation, and printable electronics than a decade. This review highlights the emerging advances in additive manufacturing-enabled hydrogels and their composites. The mechanical features of 3D printed hydrogels that show strong tissue adaptability, and the hydrogels that incorporate water within moist states, demonstrate their potential for a multitude of applications, for example, wound dressings. Recently, the 3D printing of bio-based hydrogels and other polymers has been considered a viable path toward ultimate regenerative treatment. Here, we provide an overview of (i) polymer additive manufacturing processes, (ii) different polysaccharides-based hydrogels, and (iii) the different applications of bio-based hydrogels in 3D printing. Lastly, we conclude our discussion by highlighting the future research directions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from Ref. [33]

Fig. 2
Fig. 3

Reprinted with permission from Ref. [85]

Fig. 4

Reprinted with permission from Ref. [87]

Fig. 5

Reprinted with permission from Ref. [91]

Fig. 6

Reprinted with permission from Ref. [94]

Fig. 7

Reprinted with permission from Ref. [110]

Similar content being viewed by others

References

  1. Mueller B (2012) : Additive Manufacturing Technologies – Rapid Prototyping to Direct Digital Manufacturing.Assembly Automation32(2)

  2. Daminabo SC, Goel S, Grammatikos SA, Nezhad HY, Thakur VK (2020) Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater Today Chem 16:100248

    Article  CAS  Google Scholar 

  3. Joshi S, Rawat K, Rajamohan CK, Mathew V, Koziol AT, Thakur KKumar (2020) 4D printing of materials for the future: Opportunities and challenges. Appl Mater Today 18:100490

    Article  Google Scholar 

  4. Bártolo PJ, Gibson I (2011) History of Stereolithographic Processes. In: Bártolo PJ (ed) Stereolithography: Materials, Processes and Applications. Springer US, Boston, MA, pp 37–56

    Chapter  Google Scholar 

  5. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89

    Article  Google Scholar 

  6. Wojtyła S, Klama P, Baran T (2017) Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. J Occup Environ Hyg 14(6):D80–D85

    Article  PubMed  Google Scholar 

  7. Maturavongsadit P, Narayanan LK, Chansoria P, Shirwaiker R, Benhabbour SR (2021) Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. ACS Appl Bio Mater 4(3):2342–2353

    Article  CAS  PubMed  Google Scholar 

  8. Maturavongsadit P, Paravyan G, Shrivastava R, Benhabbour SR (2020) Thermo-/pH-responsive chitosan-cellulose nanocrystals based hydrogel with tunable mechanical properties for tissue regeneration applications. Materialia 12:100681

    Article  CAS  Google Scholar 

  9. Danish M, Anirudh V, Karunakaran P, Rajamohan C, Mathew V, Koziol AT, Thakur K, Kannan VK, Balan C (2021) 4D printed stereolithography printed plant-based sustainable polymers: Preliminary investigation and optimization. J Appl Polym Sci 138(36):50903

    Article  CAS  Google Scholar 

  10. Pappu A, Pickering KL, Thakur VK (2019) Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Ind Crops Prod 137:260–269

    Article  CAS  Google Scholar 

  11. Franchetti M, Kress C (2017) An economic analysis comparing the cost feasibility of replacing injection molding processes with emerging additive manufacturing techniques. Int J Adv Manuf Technol 88(9):2573–2579

    Article  Google Scholar 

  12. Gaub H (2016) Customization of mass-produced parts by combining injection molding and additive manufacturing with Industry 4.0 technologies. Reinf Plast 60(6):401–404

    Article  Google Scholar 

  13. Andrzejewska E, Andrzejewski M (1998) Polymerization kinetics of photocurable acrylic resins. J Polym Sci Part A: Polym Chem 36(4):665–673

    Article  CAS  Google Scholar 

  14. Voet VSD, Strating T, Schnelting GHM, Dijkstra P, Tietema M, Xu J, Woortman AJJ, Loos K, Jager J, Folkersma R (2018) Biobased Acrylate Photocurable Resin Formulation for Stereolithography 3D Printing. ACS Omega 3(2):1403–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao T, Li X, Yu R, Zhang Y, Yang X, Zhao X, Wang L, Huang W (2018) Silicone–Epoxy-Based Hybrid Photopolymers for 3D Printing. Macromol Chem Phys 219(10):1700530

    Article  Google Scholar 

  16. Berman B (2012) 3-D printing: The new industrial revolution. Bus Horiz 55(2):155–162

    Article  Google Scholar 

  17. Javaid M, Haleem A (2018) Additive manufacturing applications in medical cases: A literature based review. Alexandria J Med 54(4):411–422

    Article  Google Scholar 

  18. Miri AK, Khalilpour A, Cecen B, Maharjan S, Shin SR, Khademhosseini A (2019) Multiscale bioprinting of vascularized models. Biomaterials 198:204–216

    Article  CAS  PubMed  Google Scholar 

  19. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T (2019) 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Adv Sci 6(11):1900344

    Article  Google Scholar 

  20. Chen Y, Zhang J, Liu X, Wang S, Tao J, Huang Y, Wu W, Li Y, Zhou K, Wei X, Chen S, Li X, Xu X, Cardon L, Qian Z, Gou M (2020) Noninvasive in vivo 3D bioprinting. Sci Adv 6(23):eaba7406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Javaid M, Haleem A (2019) Current status and applications of additive manufacturing in dentistry: A literature-based review. J Oral Biology Craniofac Res 9(3):179–185

    Article  Google Scholar 

  22. Jasiuk I, Abueidda DW, Kozuch C, Pang S, Su FY, McKittrick J (2018) An Overview on Additive Manufacturing of Polymers. JOM 70(3):275–283

    Article  Google Scholar 

  23. Saroia J, Wang Y, Wei Q, Lei M, Li X, Guo Y, Zhang K (2020) A review on 3D printed matrix polymer composites: its potential and future challenges. Int J Adv Manuf Technol 106(5):1695–1721

    Article  Google Scholar 

  24. Siwal SS, Saini AK, Rarotra S, Zhang Q, Thakur VK (2021) : Recent advancements in transparent carbon nanotube films: chemistry and imminent challenges.Journal of Nanostructure in Chemistry

  25. Siwal SS, Thakur S, Zhang QB, Thakur VK (2019) Electrocatalysts for electrooxidation of direct alcohol fuel cell: chemistry and applications. Mater Today Chem 14:100182

    Article  CAS  Google Scholar 

  26. Islam RU, Taher A, Choudhary M, Siwal S, Mallick K (2015) : Polymer immobilized Cu(I) formation and azide-alkyne cycloaddition: A one pot reaction.Sci. Rep.5

  27. Siwal SS, Zhang Q, Devi N, Thakur KV (2020) : Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications.Polymers12(3)

  28. Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21(1):22–37

    Article  Google Scholar 

  29. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev 117(15):10212–10290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  31. Kuckling D, Arndt K-F, Richter S (2010) Synthesis of Hydrogels. In: Gerlach G, Arndt K-F (eds) Hydrogel Sensors and Actuators: Engineering and Technology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 15–67

    Google Scholar 

  32. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    Article  CAS  PubMed  Google Scholar 

  33. Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, Wageh S, Ramesh K, Ramesh S (2020) : Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications.Polymers12(11)

  34. Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G (2021) Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 272:118491

    Article  CAS  PubMed  Google Scholar 

  35. Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: A review. Polymer 69:369–383

    Article  CAS  Google Scholar 

  36. Hu X, Gao C (2008) Photoinitiating polymerization to prepare biocompatible chitosan hydrogels. J Appl Polym Sci 110(2):1059–1067

    Article  CAS  Google Scholar 

  37. Duquette D, Dumont M-J (2019) Comparative studies of chemical crosslinking reactions and applications of bio-based hydrogels. Polym Bull 76(5):2683–2710

    Article  CAS  Google Scholar 

  38. Denissen W, Rivero G, Nicolaÿ R, Leibler L, Winne JM, Prez Du (2015) Vinylogous Urethane Vitrimers. Adv Funct Mater 25(16):2451–2457

    Article  CAS  Google Scholar 

  39. Chen J, Ma X, Dong Q, Song D, Hargrove D, Vora SR, Ma AWK, Lu X, Lei Y (2016) Self-healing of thermally-induced, biocompatible and biodegradable protein hydrogel. RSC Adv 6(61):56183–56192

    Article  CAS  Google Scholar 

  40. Hinderer S, Layland SL, Schenke-Layland K (2016) ECM and ECM-like materials — Biomaterials for applications in regenerative medicine and cancer therapy. Adv Drug Deliv Rev 97:260–269

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Y, Zhang X, Wang Y, Wu Z, An J, Lu Z, Mei L, Li C (2014) In situ cross-linked polysaccharide hydrogel as extracellular matrix mimics for antibiotics delivery. Carbohydr Polym 105:63–69

    Article  CAS  PubMed  Google Scholar 

  42. Fan Z, Cheng P, Liu M, Prakash S, Han J, Ding Z, Zhao Y, Wang Z (2020) Dynamic crosslinked and injectable biohydrogels as extracellular matrix mimics for the delivery of antibiotics and 3D cell culture. RSC Adv 10(33):19587–19599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maiz-Fernández S, Pérez-Álvarez L, Ruiz-Rubio L, Vilas-Vilela JL, Lanceros-Mendez S (2020) : Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications.Polymers12(10)

  44. Liu S, Kang M, Li K, Yao F, Oderinde O, Fu G, Xu L (2018) Polysaccharide-templated preparation of mechanically-tough, conductive and self-healing hydrogels. Chem Eng J 334:2222–2230

    Article  CAS  Google Scholar 

  45. Tian J, Peng D, Wu X, Li W, Deng H, Liu S (2017) Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage. Carbohydr Polym 156:19–25

    Article  CAS  PubMed  Google Scholar 

  46. Pathak VM, Kumar N (2017) Dataset on the superabsorbent hydrogel synthesis with SiO2 nanoparticle and role in water restoration capability of agriculture soil. Data in Brief 13:291–294

    Article  PubMed  PubMed Central  Google Scholar 

  47. Moshaverinia A, Chen C, Akiyama K, Ansari S, Xu X, Chee WW, Schricker SR, Shi S (2012) Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J Mater Science: Mater Med 23(12):3041–3051

    CAS  Google Scholar 

  48. Le XT, Turgeon SL (2013) Rheological and structural study of electrostatic cross-linked xanthan gum hydrogels induced by β-lactoglobulin. Soft Matter 9(11):3063–3073

    Article  CAS  Google Scholar 

  49. Tu H, Yu Y, Chen J, Shi X, Zhou J, Deng H, Du Y (2017) Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose. Polym Chem 8(19):2913–2921

    Article  CAS  Google Scholar 

  50. Shakeri S, Ashrafizadeh M, Zarrabi A, Roghanian R, Afshar EG, Pardakhty A, Mohammadinejad R, Kumar A, Thakur VK (2020) : Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines 8(1)

  51. Ates B, Koytepe S, Ulu A, Gurses C, Thakur VK (2020) Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chem Rev 120(17):9304–9362

    Article  CAS  PubMed  Google Scholar 

  52. Rana AK, Frollini E, Thakur VK (2021) Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. Int J Biol Macromol 182:1554–1581

    Article  CAS  PubMed  Google Scholar 

  53. Zhu T, Mao J, Cheng Y, Liu H, Lv L, Ge M, Li S, Huang J, Chen Z, Li H, Yang L, Lai Y (2019) Recent Progress of Polysaccharide-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Adv Mater Interfaces 6(17):1900761

    Article  Google Scholar 

  54. Sheoran K, Siwal SS, Kapoor D, Singh N, Saini AK, Alsanie WF, Thakur VK (2022) Air Pollutants Removal Using Biofiltration Technique: A Challenge at the Frontiers of Sustainable Environment. ACS Engineering Au

  55. Lee KY, Mooney DJ (2012) Alginate: Properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Coviello T, Matricardi P, Alhaique F (2006) Drug delivery strategies using polysaccharidic gels. Expert Opin Drug Deliv 3(3):395–404

    Article  CAS  PubMed  Google Scholar 

  57. Aldana AA, Valente F, Dilley R, Doyle B (2021) : Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties.Bioprinting21, e00105

  58. Abune L, Wang Y (2021) Affinity Hydrogels for Protein Delivery. Trends Pharmacol Sci 42(4):300–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li Z, Lin Z (2021) : Recent advances in polysaccharide-based hydrogels for synthesis and applications. Aggregate n/a(n/a)

  60. Rana AK, Gupta VK, Saini AK, Voicu SI, Abdellattifaand MH, Thakur VK (2021) Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future. Desalination 520:115359

    Article  CAS  Google Scholar 

  61. Beluns S, Gaidukovs S, Platnieks O, Gaidukova G, Mierina I, Grase L, Starkova O, Brazdausks P, Thakur VK (2021) From Wood and Hemp Biomass Wastes to Sustainable Nanocellulose Foams. Ind Crops Prod 170:113780

    Article  CAS  Google Scholar 

  62. Platnieks O, Sereda A, Gaidukovs S, Thakur VK, Barkane A, Gaidukova G, Filipova I, Ogurcovs A, Fridrihsone V (2021) Adding value to poly (butylene succinate) and nanofibrillated cellulose-based sustainable nanocomposites by applying masterbatch process. Ind Crops Prod 169:113669

    Article  CAS  Google Scholar 

  63. Ge L, Yin J, Yan D, Hong W, Jiao T (2021) Construction of Nanocrystalline Cellulose-Based Composite Fiber Films with Excellent Porosity Performances via an Electrospinning Strategy. ACS Omega 6(7):4958–4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ferreira ES, Rezende CA, Cranston ED (2021) : Fundamentals of cellulose lightweight materials: bio-based assemblies with tailored properties.Green Chemistry

  65. Siwal SS, Zhang Q, Devi N, Saini AK, Saini V, Pareek B, Gaidukovs S, Thakur VK (2021) Recovery processes of sustainable energy using different biomass and wastes. Renew Sustain Energy Rev 150:111483

    Article  CAS  Google Scholar 

  66. Liao J, Dai H, Huang H (2021) Construction of hydrogels based on the homogeneous carboxymethylated chitin from Hericium erinaceus residue: Role of carboxymethylation degree. Carbohydr Polym 262:117953

    Article  CAS  PubMed  Google Scholar 

  67. Kabir SMF, Sikdar PP, Haque B, Bhuiyan MAR, Ali A, Islam MN (2018) Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog Biomater 7(3):153–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thakur VK, Thakur MK (2014) Recent Advances in Graft Copolymerization and Applications of Chitosan: A Review. ACS Sustain Chem Eng 2(12):2637–2652

    Article  CAS  Google Scholar 

  69. Ashrafizadeh M, Ahmadi Z, Mohamadi N, Zarrabi A, Abasi S, Dehghannoudeh G, Tamaddondoust RN, Khanbabaei H, Mohammadinejad R, Thakur VK (2020) Chitosan-based advanced materials for docetaxel and paclitaxel delivery: Recent advances and future directions in cancer theranostics. Int J Biol Macromol 145:282–300

    Article  CAS  PubMed  Google Scholar 

  70. Yen M-T, Yang J-H, Mau J-L (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75(1):15–21

    Article  CAS  Google Scholar 

  71. Kumar A, Nutan B, Jewrajka SK (2021) Modulation of Properties through Covalent Bond Induced Formation of Strong Ion Pairing between Polyelectrolytes in Injectable Conetwork Hydrogels. ACS Applied Bio Materials

  72. Moura MJ, Faneca H, Lima MP, Gil MH, Figueiredo MM (2011) In Situ Forming Chitosan Hydrogels Prepared via Ionic/Covalent Co-Cross-Linking. Biomacromolecules 12(9):3275–3284

    Article  CAS  PubMed  Google Scholar 

  73. Shariatinia Z (2018) Carboxymethyl chitosan: Properties and biomedical applications. Int J Biol Macromol 120:1406–1419

    Article  CAS  PubMed  Google Scholar 

  74. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99

    Article  CAS  PubMed  Google Scholar 

  75. Oliveira JT, Martins L, Picciochi R, Malafaya PB, Sousa RA, Neves NM, Mano JF, Reis RL (2010) Gellan gum: A new biomaterial for cartilage tissue engineering applications. J Biomedical Mater Res Part A 93A(3):852–863

    CAS  Google Scholar 

  76. Du H, Hamilton P, Reilly M, Ravi N (2012) Injectable in situ Physically and Chemically Crosslinkable Gellan Hydrogel. Macromol Biosci 12(7):952–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gong Y, Wang C, Lai RC, Su K, Zhang F, Wang D-a (2009) An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regenerationin vitro. J Mater Chem 19(14):1968–1977

    Article  CAS  Google Scholar 

  78. Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X (2012) Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter 8(12):3280–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr Polym 92(2):1262–1279

    Article  CAS  PubMed  Google Scholar 

  80. Lam J, Truong NF, Segura T (2014) Design of cell–matrix interactions in hyaluronic acid hydrogel scaffolds. Acta Biomater 10(4):1571–1580

    Article  CAS  PubMed  Google Scholar 

  81. Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJA, Groll J, Hutmacher DW (2013) 25th Anniversary Article: Engineering Hydrogels for Biofabrication. Adv Mater 25(36):5011–5028

    Article  CAS  PubMed  Google Scholar 

  82. Sultan S, Siqueira G, Zimmermann T, Mathew AP (2017) 3D printing of nano-cellulosic biomaterials for medical applications. Curr Opin Biomedical Eng 2:29–34

    Article  Google Scholar 

  83. Leppiniemi J, Lahtinen P, Paajanen A, Mahlberg R, Metsä-Kortelainen S, Pinomaa T, Pajari H, Vikholm-Lundin I, Pursula P, Hytönen VP (2017) 3D-Printable Bioactivated Nanocellulose–Alginate Hydrogels. ACS Appl Mater Interfaces 9(26):21959–21970

    Article  CAS  PubMed  Google Scholar 

  84. Domingues RMA, Gomes ME, Reis RL (2014) The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies. Biomacromolecules 15(7):2327–2346

    Article  CAS  PubMed  Google Scholar 

  85. Liu Q, Li Q, Xu S, Zheng Q, Cao X (2018) : Preparation and Properties of 3D Printed Alginate–Chitosan Polyion Complex Hydrogels for Tissue Engineering.Polymers10(6)

  86. Johnson BN, Lancaster KZ, Zhen G, He J, Gupta MK, Kong YL, Engel EA, Krick KD, Ju A, Meng F, Enquist LW, Jia X, McAlpine MC (2015) 3D Printed Anatomical Nerve Regeneration Pathways. Adv Funct Mater 25(39):6205–6217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Maiti B, Díaz Díaz D (2018) : 3D Printed Polymeric Hydrogels for Nerve Regeneration.Polymers10(9)

  88. Beri P, Matte BF, Fattet L, Kim D, Yang J, Engler AJ (2018) Biomaterials to model and measure epithelial cancers. Nat Reviews Mater 3(11):418–430

    Article  Google Scholar 

  89. Li Y, Kumacheva E (2018) Hydrogel microenvironments for cancer spheroid growth and drug screening. Sci Adv 4(4):eaas8998

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nie J, Gao Q, Xie C, Lv S, Qiu J, Liu Y, Guo M, Guo R, Fu J, He Y (2020) Construction of multi-scale vascular chips and modelling of the interaction between tumours and blood vessels. Mater Horiz 7(1):82–92

    Article  CAS  Google Scholar 

  91. Cao X, Ashfaq R, Cheng F, Maharjan S, Li J, Ying G, Hassan S, Xiao H, Yue K, Zhang YS (2019) A Tumor-on-a-Chip System with Bioprinted Blood and Lymphatic Vessel Pair. Adv Funct Mater 29(31):1807173

    Article  PubMed  PubMed Central  Google Scholar 

  92. Liu S, Chen X, Zhang Y (2020) Chap. 14 - Hydrogels and hydrogel composites for 3D and 4D printing applications. In: Sadasivuni KK, Deshmukh K, Almaadeed MA (eds) 3D and 4D Printing of Polymer Nanocomposite Materials. Elsevier, pp 427–465

  93. Liu S, Li L (2017) Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor. ACS Appl Mater Interfaces 9(31):26429–26437

    Article  CAS  PubMed  Google Scholar 

  94. Yuk H, Lin S, Ma C, Takaffoli M, Fang NX, Zhao X (2017) Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat Commun 8(1):14230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Han D, Farino C, Yang C, Scott T, Browe D, Choi W, Freeman JW, Lee H (2018) Soft Robotic Manipulation and Locomotion with a 3D Printed Electroactive Hydrogel. ACS Appl Mater Interfaces 10(21):17512–17518

    Article  CAS  PubMed  Google Scholar 

  96. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341

    Article  CAS  PubMed  Google Scholar 

  97. Malik HH, Darwood ARJ, Shaunak S, Kulatilake P, El-Hilly AA, Mulki O, Baskaradas A (2015) Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res 199(2):512–522

    Article  PubMed  Google Scholar 

  98. Hosny A, Dilley JD, Kelil T, Mathur M, Dean MN, Weaver JC, Ripley B (2019) Pre-procedural fit-testing of TAVR valves using parametric modeling and 3D printing. J Cardiovasc Comput Tomogr 13(1):21–30

    Article  PubMed  Google Scholar 

  99. Schmauss D, Schmitz C, Bigdeli AK, Weber S, Gerber N, Beiras-Fernandez A, Schwarz F, Becker C, Kupatt C, Sodian R (2012) Three-Dimensional Printing of Models for Preoperative Planning and Simulation of Transcatheter Valve Replacement. Ann Thorac Surg 93(2):e31–e33

    Article  PubMed  Google Scholar 

  100. Choudhary M, Shukla SK, Taher A, Siwal S, Mallick K (2014) Organic–Inorganic Hybrid Supramolecular Assembly: An Efficient Platform for Nonenzymatic Glucose Sensor. ACS Sustainable Chemistry & Engineering

  101. Kaur H, Siwal SS, Chauhan G, Saini AK, Kumari A, Thakur VK (2022) : Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants.Chemosphere, 135182

  102. Kaur H, Sheoran K, Siwal SS, Saini RV, Saini AK, Alsanie WF, Thakur VK (2022) : Role of Silver Nanoparticle-Doped 2-Aminodiphenylamine Polymeric Material in the Detection of Dopamine (DA) with Uric Acid Interference.Materials15(4)

  103. Siwal SS, Zhang Q, Sun C, Thakur VK (2019) : Graphitic Carbon Nitride Doped Copper–Manganese Alloy as High–Performance Electrode Material in Supercapacitor for Energy Storage.Nanomaterials10(1)

  104. Siwal SS, Yang W, Zhang Q (2020) Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media. J Energy Chem 51:113–133

    Article  Google Scholar 

  105. Siwal SS, Zhang Q, Saini AK, Gupta VK, Roberts D, Saini V, Coulon F, Pareek B, Thakur VK (2021) Recent advances in bio-electrochemical system analysis in biorefineries. J Environ Chem Eng 9(5):105982

    Article  CAS  Google Scholar 

  106. Yuk H, Lu B, Zhao X (2019) Hydrogel bioelectronics. Chem Soc Rev 48(6):1642–1667

    Article  CAS  PubMed  Google Scholar 

  107. Wu X, Peng H (2019) Polymer-based flexible bioelectronics. Sci Bull 64(9):634–640

    Article  CAS  Google Scholar 

  108. Valentine AD, Busbee TA, Boley JW, Raney JR, Chortos A, Kotikian A, Berrigan JD, Durstock MF, Lewis JA (2017) Hybrid 3D Printing of Soft Electronics. Adv Mater 29(40):1703817

    Article  Google Scholar 

  109. Liu X, Yuk H, Lin S, Parada GA, Tang T-C, Tham E, de la Fuente-Nunez C, Lu TK, Zhao X (2018) : Responsive Materials: 3D Printing of Living Responsive Materials and Devices (Adv. Mater. 4/2018). Advanced Materials 30(4), 1870021

  110. Yang H, Leow WR, Chen X (2018) 3D Printing of Flexible Electronic Devices. Small Methods 2(1):1700259

    Article  Google Scholar 

  111. Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT (2017) Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication. Stem Cells Translational Medicine 6(10):1940–1948

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sultan S, Mathew AP (2018) 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Nanoscale 10(9):4421–4431

    Article  CAS  PubMed  Google Scholar 

  113. Huang J, Qin Q, Wang J (2020) :A Review of Stereolithography: Processes and Systems. Processes8(9)

  114. Anandakrishnan N, Ye H, Guo Z, Chen Z, Mentkowski KI, Lang JK, Rajabian N, Andreadis ST, Ma Z, Spernyak JA, Lovell JF, Wang D, Xia J, Zhou C, Zhao R (2021) Fast Stereolithography Printing of Large-Scale Biocompatible Hydrogel Models. Adv Healthc Mater 10(10):2002103

    Article  CAS  Google Scholar 

  115. Zhu W, Qu X, Zhu J, Ma X, Patel S, Liu J, Wang P, Lai CSE, Gou M, Xu Y, Zhang K, Chen S (2017) Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 124:106–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Soman P, Chung PH, Zhang AP, Chen S (2013) Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng 110(11):3038–3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. de Leon AC, Chen Q, Palaganas NB, Palaganas JO, Manapat J, Advincula RC (2016) High performance polymer nanocomposites for additive manufacturing applications. Reactive and Functional Polymers 103:141–155

    Article  Google Scholar 

  118. Melilli G, Carmagnola I, Tonda-Turo C, Pirri F, Ciardelli G, Sangermano M, Hakkarainen M, Chiappone A (2020) : DLP 3D Printing Meets Lignocellulosic Biopolymers: Carboxymethyl Cellulose Inks for 3D Biocompatible Hydrogels.Polymers12(8)

  119. Bagheri A, Jin J (2019) Photopolymerization in 3D Printing. ACS Appl Polym Mater 1(4):593–611

    Article  CAS  Google Scholar 

  120. Mallakpour S, Azadi E, Hussain CM (2021) State-of-the-art of 3D printing technology of alginate-based hydrogels—An emerging technique for industrial applications. Adv Colloid Interface Sci 293:102436

    Article  CAS  PubMed  Google Scholar 

  121. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J (2018) Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Engineering: C 83:195–201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Department of Chemistry and Research & Development Cell of Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India. Walaa Fahad Alsanie would also like to acknowledge the Taif University TURSP program (TURSP-HC2022/5) for funding. Adriana Kovalcik acknowledges funding from the Brno University of Technology through grant FCH-S-22-7909. Vijay Kumar Thakur would also like to thank the research support provided by the UKRI via Grant No. EP/T024607/1, Royal Academy of Engineering (IAPP18-19\295), and SFC (UIF funding).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samarjeet Singh Siwal or Vijay Kumar Thakur.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siwal, S.S., Mishra, K., Saini, A.K. et al. Additive manufacturing of bio-based hydrogel composites: recent advances. J Polym Environ 30, 4501–4516 (2022). https://doi.org/10.1007/s10924-022-02516-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02516-z

Keywords

Navigation