Skip to main content
Log in

Removal of Methylene Blue Dye from Aqueous Solution using PDADMAC Modified ZSM-5 Zeolite as a Novel Adsorbent

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the present work, we modified ZSM-5 zeolite using a bio polymer poly (diallyl dimethyl ammonium chloride) and employed it for the removal of cationic dye, methylene blue from aqueous solution. The chemical and physical properties of the modified ZSM-5 zeolite were investigated using XRD, FTIR, SEM, TEM, nitrogen adsorption, TGA and 27Al NMR. Modified ZSM-5 zeolite possesses high surface area and pore diameter which was confirmed from SEM, TEM and nitrogen adsorption analysis. Adsorption of methylene blue on zeolite was investigated by batch adsorption technique. The effect of different parameters such as zeolite dosage, initial methylene blue concentration, temperature, pH and contact time on the adsorption process was discussed. Maximum adsorption capacity (4.31 mg/g) was achieved using 0.1 g of modified ZSM-5 zeolite at the optimum conditions (initial dye concentration: 10 mg/L, pH 10, temperature: 30 °C and contact time: 300 min). The experimental data were fitted into Langmuir and Freundlich models and the results indicate that the adsorption process followed Freundlich isotherm. Kinetic data were investigated using pseudo-first-order and pseudo-second-order models. Kinetic analysis indicates that pseudo-second-order model is more suitable to describe adsorption of MB on modified ZSM-5 zeolite. The reusability test suggests that the adsorbent could be reused at least six times without significant loss in removal efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Dil EA, Ghaedi M, Ghezelbash GR, Asfaram A, Ghaedi AM, Mehrabi F (2016) Modeling and optimization of Hg2+ ion biosorption by live yeast Yarrowia lipolytica 70562 from aqueous solutions under artificial neural network-genetic algorithm and response surface methodology: kinetic and equilibrium study. RSC Adv 6(59):54149–54161. https://doi.org/10.1039/c6ra11292g

    Article  CAS  Google Scholar 

  2. Sharifpour E, Khafri HZ, Ghaedi M, Asfaram A, Jannesar R (2018) Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: experimental design optimization. Ultrason Sonochem 40:373–382. https://doi.org/10.1016/j.ultsonch.2017.07.030

    Article  CAS  PubMed  Google Scholar 

  3. Kumari S, Khan AA, Chowdhury A, Bhakta AK, Mekhalif Z, Hussain S (2020) Efficient and highly selective adsorption of cationic dyes and removal of ciprofloxacin antibiotic by surface modified nickel sulfide nanomaterials: kinetics, isotherm and adsorption mechanism. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2019.124264

    Article  Google Scholar 

  4. Sun H, Cao L, Lu L (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4(6):550–562. https://doi.org/10.1007/s12274-011-0111-3

    Article  CAS  Google Scholar 

  5. Wang XS, Zhou Y, Jiang Y, Sun C (2008) The removal of basic dyes from aqueous solutions using agricultural by-products. J Hazard Mater 157(2–3):374–385. https://doi.org/10.1016/j.jhazmat.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  6. Talaiekhozani A, Reza Mosayebi M, Fulazzaky MA, Eskandari Z, Sanayee R (2020) Combination of TiO2 microreactor and electroflotation for organic pollutant removal from textile dyeing industry wastewater. Alexandria Eng J 59(2):549–563. https://doi.org/10.1016/j.aej.2020.01.052

    Article  Google Scholar 

  7. Tkaczyk A, Mitrowska K, Posyniak A (2020) Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.137222

    Article  PubMed  Google Scholar 

  8. Adegoke KA, Bello OS (2015) Dye sequestration using agricultural wastes as adsorbents. Water Resour Ind 12:8–24. https://doi.org/10.1016/j.wri.2015.09.002

    Article  Google Scholar 

  9. Alver E, Metin AÜ (2012) Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem Eng J 200–202:59–67. https://doi.org/10.1016/j.cej.2012.06.038

    Article  CAS  Google Scholar 

  10. Mall ID, Srivastava VC, Agarwal NK (2006) Removal of orange-G and methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes Pigm 69(3):210–223. https://doi.org/10.1016/j.dyepig.2005.03.013

    Article  CAS  Google Scholar 

  11. Khodaie M, Ghasemi N, Moradi B, Rahimi M (2013) Removal of methylene blue from wastewater by adsorption onto ZnCl2 activated corn husk carbon equilibrium studies. J Chem 2013:1–6. https://doi.org/10.1155/2013/383985

    Article  CAS  Google Scholar 

  12. Naushad M, Alqadami AA, AlOthman ZA, Alsohaimi IH, Algamdi MS, Aldawsari AM (2019) Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.111442

    Article  Google Scholar 

  13. Sizmur T, Fresno T, Akgül G, Frost H, Moreno-Jiménez E (2017) Biochar modification to enhance sorption of inorganics from water. Biores Technol 246:34–47. https://doi.org/10.1016/j.biortech.2017.07.082

    Article  CAS  Google Scholar 

  14. Zhao B, O’Connor D, Zhang J, Peng T, Shen Z, Tsang DCW, Hou D (2018) Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174:977–987. https://doi.org/10.1016/j.jclepro.2017.11.013

    Article  CAS  Google Scholar 

  15. Benkhaya S, Achiou B, Ouammou M, Bennazha J, Alami Younssi S, M’rabet S, El Harfi A (2019) Preparation of low-cost composite membrane made of polysulfone/polyetherimide ultrafiltration layer and ceramic pozzolan support for dyes removal. Mater Today Commun 19:212–219. https://doi.org/10.1016/j.mtcomm.2019.02.002

    Article  CAS  Google Scholar 

  16. Nas MS, Calimli MH, Burhan H, Yılmaz M, Mustafov SD, Sen F (2019) Synthesis, characterization, kinetics and adsorption properties of Pt-Co@GO nano-adsorbent for methylene blue removal in the aquatic mediums using ultrasonic process systems. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.112100

    Article  Google Scholar 

  17. Vakili M, Deng S, Cagnetta G, Wang W, Meng P, Liu D, Yu G (2019) Regeneration of chitosan-based adsorbents used in heavy metal adsorption: a review. Sep Purif Technol 224:373–387. https://doi.org/10.1016/j.seppur.2019.05.040

    Article  CAS  Google Scholar 

  18. Jawad AH, Abdulhameed AS (2020) Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: adsorption kinetic, isotherm and mechanism study. Surf Interfaces. https://doi.org/10.1016/j.surfin.2019.100422

    Article  Google Scholar 

  19. Pang X, Sellaoui L, Franco D, Netto MS, Georgin J, Luiz Dotto G, Li Z (2020) Preparation and characterization of a novel mountain soursop seeds powder adsorbent and its application for the removal of crystal violet and methylene blue from aqueous solutions. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123617

    Article  Google Scholar 

  20. Pomicpic J, Dancel GC, Cabalar PJ, Madrid J (2020) Methylene blue removal by poly(acrylic acid)-grafted pineapple leaf fiber/polyester nonwoven fabric adsorbent and its comparison with removal by gamma or electron beam irradiation. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2020.108737

    Article  Google Scholar 

  21. Shooto ND, Thabede PM, Bhila B, Moloto H, Naidoo EB (2020) Lead ions and methylene blue dye removal from aqueous solution by mucuna beans (velvet beans) adsorbents. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103557

    Article  Google Scholar 

  22. Mouni L, Belkhiri L, Bollinger J-C, Bouzaza A, Assadi A, Tirri A, Remini H (2018) Removal of methylene blue from aqueous solutions by adsorption on kaolin: kinetic and equilibrium studies. Appl Clay Sci 153:38–45. https://doi.org/10.1016/j.clay.2017.11.034

    Article  CAS  Google Scholar 

  23. Huang T, Yan M, He K, Huang Z, Zeng G, Chen A, Chen G (2019) Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. J Colloid Interface Sci 543:43–51. https://doi.org/10.1016/j.jcis.2019.02.030

    Article  CAS  PubMed  Google Scholar 

  24. He K, Chen G, Zeng G, Chen A, Huang Z, Shi J, Hu L (2018) Enhanced removal performance for methylene blue by kaolin with graphene oxide modification. J Taiwan Inst Chem Eng 89:77–85. https://doi.org/10.1016/j.jtice.2018.04.013

    Article  CAS  Google Scholar 

  25. Rida K, Bouraoui S, Hadnine S (2013) Adsorption of methylene blue from aqueous solution by kaolin and zeolite. Appl Clay Sci 83–84:99–105. https://doi.org/10.1016/j.clay.2013.08.015

    Article  CAS  Google Scholar 

  26. Cao Y-L, Pan Z-H, Shi Q-X, Yu J-Y (2018) Modification of chitin with high adsorption capacity for methylene blue removal. Int J Biol Macromol 114:392–399. https://doi.org/10.1016/j.ijbiomac.2018.03.138

    Article  CAS  PubMed  Google Scholar 

  27. Aysan H, Edebali S, Ozdemir C, Celi̇k Karakaya M, Karakaya N (2016) Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous Mesoporous Mater 235:78–86. https://doi.org/10.1016/j.micromeso.2016.08.007

    Article  CAS  Google Scholar 

  28. Miyah Y, Lahrichi A, Idrissi M, Khalil A, Zerrouq F (2018) Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: equilibrium and kinetic studies. Surf Interfaces 11:74–81. https://doi.org/10.1016/j.surfin.2018.03.006

    Article  CAS  Google Scholar 

  29. Aichour A, Zaghouane-Boudiaf H (2019) Highly brilliant green removal from wastewater by mesoporous adsorbents: kinetics, thermodynamics and equilibrium isotherm studies. Microchem J 146:1255–1262. https://doi.org/10.1016/j.microc.2019.02.040

    Article  CAS  Google Scholar 

  30. Shittu I, Achazhiyath Edathil A, Alsaeedi A, Al-Asheh S, Polychronopoulou K, Banat F (2019) Development of novel surfactant functionalized porous graphitic carbon as an efficient adsorbent for the removal of methylene blue dye from aqueous solutions. J Water Process Eng 28:69–81. https://doi.org/10.1016/j.jwpe.2019.01.001

    Article  Google Scholar 

  31. Soliman N, MoustafaAboudHalim AFAAKSA (2019) Effective utilization of Moringa seeds waste as a new green environmental adsorbent for removal of industrial toxic dyes. J Mater Res Technol 8(2):1798–1808. https://doi.org/10.1016/j.jmrt.2018.12.010

    Article  CAS  Google Scholar 

  32. Ullah R, Sun J, Gul A, Bai S (2020) One-step hydrothermal synthesis of TiO2-supported clinoptilolite: an integrated photocatalytic adsorbent for removal of crystal violet dye from aqueous media. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.103852

    Article  Google Scholar 

  33. Guo Y-P, Wang H-J, Guo Y-J, Guo L-H, Chu L-F, Guo C-X (2011) Fabrication and characterization of hierarchical ZSM-5 zeolites by using organosilanes as additives. Chem Eng J 166(1):391–400. https://doi.org/10.1016/j.cej.2010.10.057

    Article  CAS  Google Scholar 

  34. Han R, Zhang J, Han P, Wang Y, Zhao Z, Tang M (2009) Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chem Eng J 145(3):496–504. https://doi.org/10.1016/j.cej.2008.05.003

    Article  CAS  Google Scholar 

  35. Jin X, Jiang M-q, Shan X-q, Pei Z-g, Chen Z (2008) Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite. J Colloid Interface Sci 328(2):243–247. https://doi.org/10.1016/j.jcis.2008.08.066

    Article  CAS  PubMed  Google Scholar 

  36. Wang S, Zhu Z (2006) Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution. J Hazard Mater 136(3):946–952. https://doi.org/10.1016/j.jhazmat.2006.01.038

    Article  CAS  PubMed  Google Scholar 

  37. Jin J, Zhang X, Li Y, Li H, Wu W, Cui Y, Shi J (2012) A simple Route to synthesize mesoporous ZSM-5 templated by ammonium-modified chitosan. Chem Eur J 18(51):16549–16555. https://doi.org/10.1002/chem.201201614

    Article  CAS  PubMed  Google Scholar 

  38. Krishnamurthy M, Msm K, Kanakkampalayam KC (2016) Hierarchically structured MFI zeolite monolith prepared using agricultural waste as solid template. Microporous Mesoporous Mater 221:23–31. https://doi.org/10.1016/j.micromeso.2015.09.022

    Article  CAS  Google Scholar 

  39. Sabarish R, Unnikrishnan G (2017) Synthesis, characterization and catalytic activity of hierarchical ZSM-5 templated by carboxymethyl cellulose. Powder Technol 320:412–419. https://doi.org/10.1016/j.powtec.2017.07.041

    Article  CAS  Google Scholar 

  40. Sabarish R, Unnikrishnan G (2019) Synthesis, characterization and evaluations of micro/mesoporous ZSM-5 zeolite using starch as bio template. SN Appl Sci. https://doi.org/10.1007/s42452-019-1036-9

    Article  Google Scholar 

  41. Drumm FC, Oliveira JSD, Enders MSP, Müller EI, Urquieta-González EA, Dotto GL, Jahn SL (2018) Use of chitin as a template for the preparation of mesostructured ZSM-5. Cerâmica 64(370):214–218. https://doi.org/10.1590/0366-69132018643702271

    Article  CAS  Google Scholar 

  42. Radoor S, Karayil J, Parameswaranpillai J, Siengchin S (2020) Adsorption study of anionic dye, eriochrome black t from aqueous medium using polyvinyl alcohol/starch/ZSM-5 zeolite membrane. J Polym Environ 28(10):2631–2643. https://doi.org/10.1007/s10924-020-01812-w

    Article  CAS  Google Scholar 

  43. Sari ZGLV, Younesi H, Kazemian H (2014) Synthesis of nanosized ZSM-5 zeolite using extracted silica from rice husk without adding any alumina source. Appl Nanosci 5(6):737–745. https://doi.org/10.1007/s13204-014-0370-x

    Article  CAS  Google Scholar 

  44. Armagan B, Turan M, Karadag D (2010) Adsorption of different reactive dyes onto surfactant-modified zeolite: kinetic and equilibrium modeling. In Survival and Sustainability, pp. 1237–1254

  45. Armağan B, Turan M, Özdemir O, Çelik MS (2004) Color removal of reactive dyes from water by Clinoptilolite. J Environ Sci Health Part A 39(5):1251–1261. https://doi.org/10.1081/ese-120030329

    Article  Google Scholar 

  46. Radoor S, Karayil J, Jayakumar A, Parameswaranpillai J, Siengchin S (2021) An efficient removal of malachite green dye from aqueous environment using ZSM-5 zeolite/polyvinyl alcohol/carboxymethyl cellulose/sodium alginate bio composite. J Polym Environ. https://doi.org/10.1007/s10924-020-02024-y

    Article  Google Scholar 

  47. Radoor S, Karayil J, Parameswaranpillai J, Siengchin S (2020) Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ZSM-5 zeolite membrane. Sci Rep. https://doi.org/10.1038/s41598-020-72398-5

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sabarish R, Jasila K, Aswathy J, Jyotishkumar P, Suchart S (2020) Fabrication of PVA/agar/modified ZSM-5 zeolite membrane for removal of anionic dye from aqueous solution. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-02998-1

    Article  Google Scholar 

  49. Sabarish R, Unnikrishnan G (2020) A novel anionic surfactant as template for the development of hierarchical ZSM-5 zeolite and its catalytic performance. J Porous Mater 27(3):691–700. https://doi.org/10.1007/s10934-019-00852-5

    Article  CAS  Google Scholar 

  50. Narayanan S, Vijaya JJ, Sivasanker S, Ragupathi C, Sankaranarayanan TM, Kennedy LJ (2016) Hierarchical ZSM-5 catalytic performance evaluated in the selective oxidation of styrene to benzaldehyde using TBHP. J Porous Mater 23(3):741–752. https://doi.org/10.1007/s10934-016-0129-8

    Article  CAS  Google Scholar 

  51. Bai P, Wu P, Xing W, Liu D, Zhao L, Wang Y, Zhao XS (2015) Synthesis and catalytic properties of ZSM-5 zeolite with hierarchical pores prepared in the presence of n-hexyltrimethylammonium bromide. J Mater Chem A 3(36):18586–18597. https://doi.org/10.1039/c5ta05350a

    Article  CAS  Google Scholar 

  52. Narayanan S, Vijaya JJ, Sivasanker S, Yang S, Kennedy LJ (2014) Hierarchical ZSM-5 catalyst synthesized by a Triton X-100 assisted hydrothermal method. Chin J Catal 35(11):1892–1899. https://doi.org/10.1016/s1872-2067(14)60177-7

    Article  CAS  Google Scholar 

  53. Noor P, Khanmohammadi M, Roozbehani B, Yaripour F, Bagheri GA (2018) Introduction of table sugar as a soft second template in ZSM-5 nanocatalyst and its effect on product distribution and catalyst lifetime in methanol to gasoline conversion. J Energy Chem 27(2):582–590. https://doi.org/10.1016/j.jechem.2017.10.031

    Article  Google Scholar 

  54. Brião GV, Jahn SL, Foletto EL, Dotto GL (2017) Adsorption of crystal violet dye onto a mesoporous ZSM-5 zeolite synthetized using chitin as template. J Colloid Interface Sci 508:313–322. https://doi.org/10.1016/j.jcis.2017.08.070

    Article  CAS  PubMed  Google Scholar 

  55. Tao H, Li C, Ren J, Wang Y, Lu G (2011) Synthesis of mesoporous zeolite single crystals with cheap porogens. J Solid State Chem 184(7):1820–1827. https://doi.org/10.1016/j.jssc.2011.05.023

    Article  CAS  Google Scholar 

  56. Yin C, Feng L, Ni R, Hu L, Zhao X, Tian D (2014) One-pot synthesis of hierarchically nanoporous ZSM-5 for catalytic cracking. Powder Technol 253:10–13. https://doi.org/10.1016/j.powtec.2013.10.027

    Article  CAS  Google Scholar 

  57. Ma Y, Hu J, Jia L, Li Z, Kan Q, Wu S (2013) Synthesis, characterization and catalytic activity of a novel mesoporous ZSM-5 zeolite. Mater Res Bull 48(5):1881–1884. https://doi.org/10.1016/j.materresbull.2013.01.014

    Article  CAS  Google Scholar 

  58. Stavrinou A, Aggelopoulos CA, Tsakiroglou CD (2018) Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: adsorption kinetics and equilibrium isotherms as a tool. J Environ Chem Eng 6(6):6958–6970. https://doi.org/10.1016/j.jece.2018.10.063

    Article  CAS  Google Scholar 

  59. Eltaweil AS, Ali Mohamed H, Abd El-Monaem EM, El-Subruiti GM (2020) Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: characterization, adsorption kinetics, thermodynamics and isotherms. Adv Powder Technol 31(3):1253–1263. https://doi.org/10.1016/j.apt.2020.01.005

    Article  CAS  Google Scholar 

  60. Sartape AS, Mandhare AM, Jadhav VV, Raut PD, Anuse MA, Kolekar SS (2017) Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab J Chem 10:S3229–S3238. https://doi.org/10.1016/j.arabjc.2013.12.019

    Article  CAS  Google Scholar 

  61. Sharma P, Kaur R, Baskar C, Chung W-J (2010) Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination 259(1–3):249–257. https://doi.org/10.1016/j.desal.2010.03.044

    Article  CAS  Google Scholar 

  62. Sabarish R, Unnikrishnan G (2018) Novel biopolymer templated hierarchical silicalite-1 as an adsorbent for the removal of rhodamine B. J Mol Liq 272:919–929. https://doi.org/10.1016/j.molliq.2018.10.093

    Article  CAS  Google Scholar 

  63. Sabarish R, Unnikrishnan G (2018) Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohyd Polym 199:129–140. https://doi.org/10.1016/j.carbpol.2018.06.123

    Article  CAS  Google Scholar 

  64. Sabarish R, Unnikrishnan G (2018) PVA/PDADMAC/ZSM-5 zeolite hybrid matrix membranes for dye adsorption: fabrication, characterization, adsorption, kinetics and antimicrobial properties. J Environ Chem Eng 6(4):3860–3873. https://doi.org/10.1016/j.jece.2018.05.026

    Article  CAS  Google Scholar 

  65. Vadivelan V, Kumar KV (2005) Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci 286(1):90–100. https://doi.org/10.1016/j.jcis.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  66. Gong J-L, Zhang Y-L, Jiang Y, Zeng G-M, Cui Z-H, Liu K, Huan S-Y (2015) Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column. Appl Surf Sci 330:148–157. https://doi.org/10.1016/j.apsusc.2014.11.068

    Article  CAS  Google Scholar 

  67. Ding Z, Hu X, Zimmerman AR, Gao B (2014) Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass. Biores Technol 167:569–573. https://doi.org/10.1016/j.biortech.2014.06.043

    Article  CAS  Google Scholar 

  68. Golubeva OY, Pavlova SV (2016) Adsorption of methylene blue from aqueous solutions by synthetic montmorillonites of different compositions. Glass Phys Chem 42(2):207–213. https://doi.org/10.1134/s1087659616020073

    Article  CAS  Google Scholar 

  69. Acemioglu B (2005) Batch kinetic study of sorption of methylene blue by perlite. Chem Eng J 106(1):73–81. https://doi.org/10.1016/j.cej.2004.10.005

    Article  CAS  Google Scholar 

  70. Aygün A, Yenisoy-Karakaş S, Duman I (2003) Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater 66(2–3):189–195. https://doi.org/10.1016/j.micromeso.2003.08.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the King Mongkut’s University of Technology North Bangkok (KMUTNB), Thailand and grant funded the Post-Doctoral scholarship ((Grant No. KMUTNB-63-Post-03 to SR) and (Grant No. KMUTNB-64-03, KMUTNB-BasicR-64-16). For further information on what should be included under each heading, please select the Instructions for Author link.

Funding

(Grant No. KMUTNB-63-Post-03 to SR) and (Grant No. KMUTNB-64-03, KMUTNB-BasicR-64-16).

Author information

Authors and Affiliations

Authors

Contributions

SR- Conceptualization, Methodology, Investigation, Validation, Writing—original draft, Software, Writing—review and editing, Formal analysis; JK – Investigation, Analysis, Interpretation of results, Software, Writing – review and editing, Formal analysis; AJ—Data collection, Validation, Writing—review and editing, Formal analysis; JP –Validation, Software, Writing—review and editing and Investigation; SS – Editing, Funding and Supervision.

Corresponding author

Correspondence to Sabarish Radoor.

Ethics declarations

Conflict of interest

The authors don’t have any conflicts of interests.

Ethical Approval

The article we have submitted to the journal for review is original, has been written by the stated authors and has not been published elsewhere. The images that we have submitted to the journal for review are original, and has not been published elsewhere.

Consent to Participate

This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Consent for Publication

The authors confirm the consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radoor, S., Karayil, J., Jayakumar, A. et al. Removal of Methylene Blue Dye from Aqueous Solution using PDADMAC Modified ZSM-5 Zeolite as a Novel Adsorbent. J Polym Environ 29, 3185–3198 (2021). https://doi.org/10.1007/s10924-021-02111-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02111-8

Keywords

Navigation