Skip to main content

Advertisement

Log in

Nanocellulose from Industrial and Agricultural Waste for Further Use in PLA Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Cellulosic waste has stood out as potential materials for obtaining cellulose, since this raw material is highly available in a wide variety of species. These can be agricultural, forestry, or industrial. Cotton is an agricultural material of high cellulose content and great technological and economic importance. Another source with great potential is the waste from the paper industry. Both materials generate large amounts of waste that were little explored and uncorrected disposed. This work proposes the recycling of these two types of residue through the production of nanocellulose (cotton waste (CW-N) and industrial wastes (IW-N)) and their characterization by Fourier transform infrared spectroscopy, dynamic light scattering, X-ray photoelectron spectroscopy, X-ray diffraction, morphological analysis, and thermal properties. The nanocelluloses (NCs) were incorporated in poly(lactic acid) matrix, and the composites were evaluated mechanically. After the isolation of the nanocelluloses, it was found that both materials showed similar physicochemical characteristics, such as chemical functional groups and atomic composition. However, the morphologies are very distinct: the CW-N is nanofibrillar, with mean diameter around 30 nm, and the IW-N is spherical and irregular, with radius varying from 30 to 100 nm, which can be associated with the different crystalline structure of the materials. The differences in the structure were evaluated through Rietveld Refinement, and the industrial residue showed the presence of impurities in large amounts, and an increase in the cellulosic content after the conversion into nanoscale. The biocomposites showed a significant increase in the mechanical results, with improvement in the tensile strength from 63 to 69 and 78 MPa to agricultural and industrial nanocelluloses, respectively, which is associated with the good stress transfer between the fillers and the matrix and possible interactions between the active sites of PLA and nanocelluloses.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bousios S, Worrell E (2017) Towards a multiple input-multiple output paper mill: opportunities for alternative raw materials and sidestream valorisation in the paper and board industry. Resour Conserv Recycl 125:218–232. https://doi.org/10.1016/j.resconrec.2017.06.020

    Article  Google Scholar 

  2. Hynninen V, Hietala S, McKee JR et al (2018) Inverse thermoreversible mechanical stiffening and birefringence in a methylcellulose/cellulose nanocrystal hydrogel. Biomacromol 19:2795–2804. https://doi.org/10.1021/acs.biomac.8b00392

    Article  CAS  Google Scholar 

  3. Schneider VE, Peresin D, Trentin, Andréia Cristina Bortolin, Taison Anderson Sambuichi RHR (2012) Diagnosis of organic waste from the agrosilvopastoral sector and associated agroindustries. Institute of Applied Economic Research (IPEA)

  4. Szymanska-Chargot M, Chylinska M, Gdula K et al (2017) Isolation and characterization of cellulose from different fruit and vegetable pomaces. Polymers (Basel) 9: https://doi.org/10.3390/polym9100495

    Article  Google Scholar 

  5. Torres GA, Tarifa LRM (2012) Utilization of agricultural waste. University of Sao Paulo

  6. Pinho E, Soares G (2018) Cotton-hydrogel composite for improved wound healing: synthesize optimization and physicochemical characterization—part 1. Polym Adv Technol 3114–3124: https://doi.org/10.1002/pat.4432

    Article  Google Scholar 

  7. Theivasanthi T, Anne Christma FL, Toyin AJ et al (2018) Synthesis and characterization of cotton fiber-based nanocellulose. Int J Biol Macromol 109:832–836. https://doi.org/10.1016/j.ijbiomac.2017.11.054

    Article  CAS  PubMed  Google Scholar 

  8. Araújo RS, Rezende CC, Marques MFV et al (2017) Polypropylene-based composites reinforced with textile wastes. J Appl Polym Sci 134:1–10. https://doi.org/10.1002/app.45060

    Article  CAS  Google Scholar 

  9. Judd S, Jefferson B (2001) The pulp and paper industry. In: Judd S, Jefferson B (eds) Membranes for industrial wastewater recovery and re-use. Elsevier Science, New York, p 308

    Google Scholar 

  10. Phanthong P, Guan G, Ma Y et al (2016) Effect of ball milling on the production of nanocellulose using mild acid hydrolysis method. J Taiwan Inst Chem Eng 60:617–622. https://doi.org/10.1016/j.jtice.2015.11.001

    Article  CAS  Google Scholar 

  11. De SAG, Kano FS, Bonvent JJ, Rosa DS (2017) Cellulose nanostructures obtained from waste paper industry : a comparison of acid and mechanical isolation methods. Mater Res 1–6:209–214

    Google Scholar 

  12. Bajracharya RM, Manalo AC, Karunasena W, Lau KT (2016) Characterisation of recycled mixed plastic solid wastes: coupon and full-scale investigation. Waste Manag 48:72–80. https://doi.org/10.1016/j.wasman.2015.11.017

    Article  CAS  PubMed  Google Scholar 

  13. Rivera JA, López VP, Casado RR, Hervás JMS (2016) Thermal degradation of paper industry wastes from a recovered paper mill using TGA. Charact Gasif Test Waste Manag 47:225–235. https://doi.org/10.1016/j.wasman.2015.04.031

    Article  CAS  Google Scholar 

  14. d’Heni Teixeira MB, Duarte MAB, Raposo Garcez L et al (2017) Process development for cigarette butts recycling into cellulose pulp. Waste Manag 60:140–150. https://doi.org/10.1016/j.wasman.2016.10.013

    Article  CAS  PubMed  Google Scholar 

  15. Hietala M, Varrio K, Berglund L et al (2018) Potential of municipal solid waste paper as raw material for production of cellulose nanofibres. Waste Manag 80:319–326. https://doi.org/10.1016/j.wasman.2018.09.033

    Article  CAS  PubMed  Google Scholar 

  16. Qi H (2017) Novel functional materials based on cellulose. In: Springer briefs in applied sciences and technology. Springer, pp 69–87. https://www.springer.com/gp/book/9783319495910

  17. Abbasi R, Baheti V (2018) Preparation of nanocellulose from jute fiber waste. J Text Eng Fash Technol Text Eng Fash Technol 4:102–105. https://doi.org/10.15406/jteft.2018.04.00126

    Article  Google Scholar 

  18. de Carvalho Benini KCC, Voorwald HJC, Cioffi MOH et al (2018) Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydr Polym 192:337–346. https://doi.org/10.1016/j.carbpol.2018.03.055

    Article  CAS  Google Scholar 

  19. Nagalakshmaiah M, Nechyporchuk O, El Kissi N, Dufresne A (2017) Melt extrusion of polystyrene reinforced with cellulose nanocrystals modified using poly[(styrene)-co-(2-ethylhexyl acrylate)] latex particles. Eur Polym J 91:297–306. https://doi.org/10.1016/j.eurpolymj.2017.04.020

    Article  CAS  Google Scholar 

  20. Ferreira FV, Pinheiro IF, Gouveia RF et al (2017) Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites. Polym Compos 1–21: https://doi.org/10.1002/pc.24583

    Article  Google Scholar 

  21. Prado KS, Spinacé MAS (2019) Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int J Biol Macromol 122:410–416. https://doi.org/10.1016/j.ijbiomac.2018.10.187

    Article  CAS  PubMed  Google Scholar 

  22. Mahmud MM, Perveen A, Jahan RA et al (2019) Preparation of different polymorphs of cellulose from different acid hydrolysis medium. Int J Biol Macromol 130:969–976. https://doi.org/10.1016/j.ijbiomac.2019.03.027

    Article  CAS  PubMed  Google Scholar 

  23. Abdul Khalil HPS, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665. https://doi.org/10.1016/j.carbpol.2013.08.069

    Article  CAS  PubMed  Google Scholar 

  24. Nascimento DM, Nunes YL, Figueirêdo MCB et al (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem. https://doi.org/10.1039/C8GC00205C

    Article  Google Scholar 

  25. Piccinno F, Hischier R, Seeger S, Som C (2018) Predicting the environmental impact of a future nanocellulose production at industrial scale: application of the life cycle assessment scale-up framework. J Clean Prod 174:283–295. https://doi.org/10.1016/j.jclepro.2017.10.226

    Article  CAS  Google Scholar 

  26. Xu C, Chen J, Wu D et al (2016) Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: a phase interface-property relation study. Carbohydr Polym 146:58–66. https://doi.org/10.1016/j.carbpol.2016.03.058

    Article  CAS  PubMed  Google Scholar 

  27. Mukherjee T, Tobin MJ, Puskar L et al (2017) Chemically imaging the interaction of acetylated nanocrystalline cellulose (NCC) with a polylactic acid (PLA) polymer matrix. Cellulose 24:1717–1729. https://doi.org/10.1007/s10570-017-1217-x

    Article  CAS  Google Scholar 

  28. Haafiz MKM, Hassan A, Khalil HPSA et al (2016) Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. Int J Biol Macromol 85:370–378. https://doi.org/10.1016/j.ijbiomac.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  29. Shaheen TI, Emam HE (2018) Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis. Int J Biol Macromol 107:1599–1606. https://doi.org/10.1016/j.ijbiomac.2017.10.028

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Yao ZJ, Zhou J, Zhang Y (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr Polym 157:945–952. https://doi.org/10.1016/j.carbpol.2016.10.044

    Article  CAS  PubMed  Google Scholar 

  31. Smyth M, García A, Rader C et al (2017) Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Ind Crops Prod 108:257–266. https://doi.org/10.1016/j.indcrop.2017.06.006

    Article  CAS  Google Scholar 

  32. Soni B, Hassan EB, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134:581–589. https://doi.org/10.1016/j.carbpol.2015.08.031

    Article  CAS  PubMed  Google Scholar 

  33. Tuzzin G, Godinho M, Dettmer A, Zattera AJ (2016) Nanofibrillated cellulose from tobacco industry wastes. Carbohydr Polym 148:69–77. https://doi.org/10.1016/j.carbpol.2016.04.045

    Article  CAS  PubMed  Google Scholar 

  34. de Souza AG, Rocha DB, Kano FS, dos SantosRosa D (2019) Valorization of industrial paper waste by isolating cellulose nanostructures with different pretreatment methods. Resour Conserv Recycl 143:133–142. https://doi.org/10.1016/j.resconrec.2018.12.031

    Article  Google Scholar 

  35. Ditzel FI, Prestes E, Carvalho BM et al (2017) Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydr Polym 157:1577–1585. https://doi.org/10.1016/j.carbpol.2016.11.036

    Article  CAS  PubMed  Google Scholar 

  36. Jonoobi M, Oladi R, Davoudpour Y et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969. https://doi.org/10.1007/s10570-015-0551-0

    Article  CAS  Google Scholar 

  37. Maiti S, Jayaramudu J, Das K et al (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym 98:562–567. https://doi.org/10.1016/j.carbpol.2013.06.029

    Article  CAS  PubMed  Google Scholar 

  38. ABNT (2004) Brazilian standard NBR 10004 - Solid waste – Classification. pp 1–77

  39. Magnani C, Idstro A, Nordstierna L et al (2020) Interphase design of cellulose nanocrystals/poly(hydroxybutyrate-ran-valerate) bionanocomposites for mechanical and thermal properties tuning. Biomacromol. https://doi.org/10.1021/acs.biomac.9b01760

    Article  Google Scholar 

  40. Dhar P, Tarafder D, Kumar A, Katiyar V (2015) Effect of cellulose nanocrystal polymorphs on mechanical, barrier and thermal properties of poly(lactic acid) based bionanocomposites. RSC Adv 5:60426–60440. https://doi.org/10.1039/c5ra06840a

    Article  CAS  Google Scholar 

  41. Zhou L, He H, Li MC et al (2018) Enhancing mechanical properties of poly(lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Ind Crops Prod 112:449–459. https://doi.org/10.1016/j.indcrop.2017.12.044

    Article  CAS  Google Scholar 

  42. Yao L, Wang Y, Li Y, Duan J (2017) Thermal properties and crystallization behaviors of polylactide/redwood flour or bamboo fiber composites. Iran Polym J 26:161–168. https://doi.org/10.1007/s13726-017-0508-2

    Article  CAS  Google Scholar 

  43. Hernandez CC, Ferreira FF, Rosa DS (2018) X-ray powder diffraction and other analyses of cellulose nanocrystals obtained from corn straw by chemical treatments. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2018.03.085

    Article  PubMed  Google Scholar 

  44. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10

    Article  Google Scholar 

  45. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  46. Mohamad Haafiz MK, Hassan A, Zakaria Z et al (2013) Physicochemical characterization of cellulose nanowhiskers extracted from oil palm biomass microcrystalline cellulose. Mater Lett 113:87–89. https://doi.org/10.1016/j.matlet.2013.09.018

    Article  CAS  Google Scholar 

  47. Garcia-Maraver A, Salvachúa D, Martínez MJ et al (2013) Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees. Waste Manag 33:2245–2249. https://doi.org/10.1016/j.wasman.2013.07.010

    Article  CAS  PubMed  Google Scholar 

  48. Bajpai P (2015) Management of pulp and paper mill waste. Management of pulp and paper mill waste. Springer International Publishing, Cham, pp 9–17

    Google Scholar 

  49. Flauzino Neto WP, Mariano M, da Silva ISV et al (2016) Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr Polym 153:143–152. https://doi.org/10.1016/j.carbpol.2016.07.073

    Article  CAS  PubMed  Google Scholar 

  50. Boluk Y, Danumah C (2014) Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy. J Nanopart Res 16: https://doi.org/10.1007/s11051-013-2174-4

    Article  Google Scholar 

  51. Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci 29:46–56. https://doi.org/10.1016/j.cocis.2017.02.002

    Article  CAS  Google Scholar 

  52. Abdul Rahman NH, Chieng BW, Ibrahim NA, Abdul Rahman N (2017) Extraction and characterization of cellulose nanocrystals from tea leaf waste fibers. Polymers (Basel) 9:588. https://doi.org/10.3390/polym9110588

    Article  CAS  Google Scholar 

  53. Rosa MF, Medeiros ES, Malmonge JA et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92. https://doi.org/10.1016/j.carbpol.2010.01.059

    Article  CAS  Google Scholar 

  54. Orue A, Santamaria-echart A, Eceiza A, Arbelaiz A (2017) Office waste paper as cellulose nanocrystal source. J Appl Polym Sci 45257:1–11. https://doi.org/10.1002/app.45257

    Article  CAS  Google Scholar 

  55. Yang X, Han F, Xu C et al (2017) Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from corn husk. Ind Crops Prod 109:241–247. https://doi.org/10.1016/j.indcrop.2017.08.032

    Article  CAS  Google Scholar 

  56. Alves L, Medronho B, Antunes FE et al (2015) Unusual extraction and characterization of nanocrystalline cellulose from cellulose derivatives. J Mol Liq 210:106–112

    Article  CAS  Google Scholar 

  57. Lima GF, Souza AG, Rosa DS (2018) Effect of adsorption of polyethylene glycol (PEG), in aqueous media, to improve cellulose nanostructures stability. J Mol Liq 268:415–424. https://doi.org/10.1016/j.molliq.2018.07.080

    Article  CAS  Google Scholar 

  58. Achaby ME, Kassab Z, Barakat A, Aboulkas A (2018) Alfa fibers as viable sustainable source for cellulose nanocrystals extraction : Application for improving the tensile properties of biopolymer nanocomposite films. Ind Crop Prod 112:499–510. https://doi.org/10.1016/j.indcrop.2017.12.049

    Article  CAS  Google Scholar 

  59. Ludueña LN, Fortunati E, Morán JI et al (2016) Preparation and characterization of polybutylene-succinate/poly(ethylene-glycol)/cellulose nanocrystals ternary composites. J Appl Polym Sci 133:1–9. https://doi.org/10.1002/app.43302

    Article  CAS  Google Scholar 

  60. Purkait BS, Ray D, Sengupta S et al (2011) Isolation of cellulose nanoparticles from sesame husk. Ind Eng Chem Res 50:871–876. https://doi.org/10.1021/ie101797d

    Article  CAS  Google Scholar 

  61. Jiang F, Hsieh Y-L (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68. https://doi.org/10.1016/j.carbpol.2014.12.064

    Article  CAS  PubMed  Google Scholar 

  62. Joshi G, Naithani S, Varshney VK et al (2015) Synthesis and characterization of carboxymethyl cellulose from office waste paper: a greener approach towards waste management. Waste Manag 38:33–40. https://doi.org/10.1016/j.wasman.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  63. Teli MD, Jadhav A (2017) Mechanical extraction and physical characterization of Agave Angustifolia v. Marginata lignocellulosic fibre. Am Int J Res Sci Technol Eng Math 17:20–24

    Google Scholar 

  64. Ahmadi M, Madadlou A, Sabouri AA (2015) Isolation of micro- and nano-crystalline cellulose particles and fabrication of crystalline particles-loaded whey protein cold-set gel. Food Chem 174:97–103. https://doi.org/10.1016/j.foodchem.2014.11.038

    Article  CAS  PubMed  Google Scholar 

  65. Nuruddin M, Hosur M, Uddin MJ et al (2016) A novel approach for extracting cellulose nanofibers from lignocellulosic biomass by ball milling combined with chemical treatment. J Appl Polym Sci 133: https://doi.org/10.1002/app.42990

    Article  Google Scholar 

  66. de Carvalho DM, Moser C, Lindström ME, Sevastyanova O (2019) Impact of the chemical composition of cellulosic materials on the nanofibrillation process and nanopaper properties. Ind Crops Prod 127:203–211. https://doi.org/10.1016/j.indcrop.2018.10.052

    Article  CAS  Google Scholar 

  67. Shi S, Zhang M, Ling C et al (2018) Extraction and characterization of microcrystalline cellulose from waste cotton fabrics via hydrothermal method. Waste Manag 82:139–146. https://doi.org/10.1016/j.wasman.2018.10.023

    Article  CAS  PubMed  Google Scholar 

  68. Frone AN, Panaitescu DM, Chiulan I et al (2016) The effect of cellulose nanofibers on the crystallinity and nanostructure of poly(lactic acid) composites. J Mater Sci 51:9771–9791. https://doi.org/10.1007/s10853-016-0212-1

    Article  CAS  Google Scholar 

  69. Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–794. https://doi.org/10.1007/s10570-013-9871-0

    Article  CAS  Google Scholar 

  70. Barbosa RFS, Souza AG, Ferreira FF, Rosa DS (2019) Isolation and acetylation of cellulose nanostructures with a homogeneous system. Carbohydr Polym 218:208–217. https://doi.org/10.1016/j.carbpol.2019.04.072

    Article  CAS  PubMed  Google Scholar 

  71. Prado KS, Gonzales D, Spinacé MAS (2019) Recycling of viscose yarn waste through one-step extraction of nanocellulose. Int J Biol Macromol 136:729–737. https://doi.org/10.1016/j.ijbiomac.2019.06.124

    Article  CAS  PubMed  Google Scholar 

  72. Siqueira G, Várnai A, Ferraz A, Milagres AMF (2013) Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Appl Energy 102:399–402. https://doi.org/10.1016/j.apenergy.2012.07.029

    Article  CAS  Google Scholar 

  73. Dong F, Yan M, Jin C, Li S (2017) Characterization of type-II acetylated cellulose nanocrystals with various degree of substitution and its compatibility in PLA films. Polymers (Basel) 9:1–14. https://doi.org/10.3390/polym9080346

    Article  CAS  Google Scholar 

  74. Ferreira FV, Mariano M, Rabelo SC et al (2018) Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: from a micro- to a nano-scale view. Appl Surf Sci 436:1113–1122. https://doi.org/10.1016/j.apsusc.2017.12.137

    Article  CAS  Google Scholar 

  75. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. https://doi.org/10.1021/ja0257319

    Article  CAS  PubMed  Google Scholar 

  76. Chateigner D, Downs RT, Yokochi AFT, Quiro M (2009) Crystallography open database: an open-access collection of crystal structures cif applications. J Appl Crystallogr 42(4):726–729. https://doi.org/10.1107/S0021889809016690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ju X, Bowden M, Brown EE, Zhang X (2015) An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 123:476–481. https://doi.org/10.1016/j.carbpol.2014.12.071

    Article  CAS  PubMed  Google Scholar 

  78. Niazi MBK, Jahan Z, Berg SS, Gregersen ØW (2017) Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes. Carbohydr Polym 177:258–268. https://doi.org/10.1016/j.carbpol.2017.08.125

    Article  CAS  PubMed  Google Scholar 

  79. Pirich CL, Picheth GF, Machado JPE et al (2019) Influence of mechanical pretreatment to isolate cellulose nanocrystals by sulfuric acid hydrolysis. Int J Biol Macromol 130:622–626. https://doi.org/10.1016/j.ijbiomac.2019.02.166

    Article  CAS  PubMed  Google Scholar 

  80. De Figueiredo LP, Ferreira FF (2014) The rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose. J Pharm Sci 103:1394–1399. https://doi.org/10.1002/jps.23909

    Article  CAS  PubMed  Google Scholar 

  81. Tezcan E, Atıcı OG (2017) A new method for recovery of cellulose from lignocellulosic bio-waste: pile processing. Waste Manag 70:181–188. https://doi.org/10.1016/j.wasman.2017.09.017

    Article  CAS  PubMed  Google Scholar 

  82. Xiong R, Zhang X, Tian D et al (2012) Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose 19:1189–1198. https://doi.org/10.1007/s10570-012-9730-4

    Article  CAS  Google Scholar 

  83. Kallel F, Bettaieb F, Khiari R et al (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind Crops Prod 87:287–296. https://doi.org/10.1016/j.indcrop.2016.04.060

    Article  CAS  Google Scholar 

  84. Ye S, Yu HY, Wang D et al (2018) Green acid-free one-step hydrothermal ammonium persulfate oxidation of viscose fiber wastes to obtain carboxylated spherical cellulose nanocrystals for oil/water Pickering emulsion. Cellulose 25:5139–5155. https://doi.org/10.1007/s10570-018-1917-x

    Article  CAS  Google Scholar 

  85. Frone AN, Chiulan I, Panaitescu DM et al (2017) Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Mater Lett 194:160–163. https://doi.org/10.1016/j.matlet.2017.02.051

    Article  CAS  Google Scholar 

  86. Feng X, Meng X, Zhao J et al (2015) Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization. Cellulose 22:1763–1772. https://doi.org/10.1007/s10570-015-0617-z

    Article  CAS  Google Scholar 

  87. Chau M, Sriskandha SE, Pichugin D et al (2015) Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromol 16:2455–2462. https://doi.org/10.1021/acs.biomac.5b00701

    Article  CAS  Google Scholar 

  88. Neto WPF, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue – Soy hulls. Ind Crop Prod 42:480–488. https://doi.org/10.1016/j.indcrop.2012.06.041

    Article  CAS  Google Scholar 

  89. Wang Z, Yao Z, Zhou J et al (2019) Isolation and characterization of cellulose nanocrystals from pueraria root residue. Int J Biol Macromol 129:1081–1089. https://doi.org/10.1016/j.ijbiomac.2018.07.055

    Article  CAS  PubMed  Google Scholar 

  90. Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohydr Polym 69:607–611. https://doi.org/10.1016/j.carbpol.2007.01.019

    Article  CAS  Google Scholar 

  91. Ram B, Chauhan GS (2018) New spherical nanocellulose and thiol-based adsorbent for rapid and selective removal of mercuric ions. Chem Eng J 331:587–596. https://doi.org/10.1016/j.cej.2017.08.128

    Article  CAS  Google Scholar 

  92. Peng C, Yang Q, Zhao W et al (2019) Relationship between interface chemistry and reinforcement in polybutadiene/cellulose nanocrystal nanocomposites. Compos Sci Technol 177:103–110. https://doi.org/10.1016/j.compscitech.2019.04.029

    Article  CAS  Google Scholar 

  93. Espino-Pérez E, Bras J, Ducruet V et al (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154. https://doi.org/10.1016/j.eurpolymj.2013.07.017

    Article  CAS  Google Scholar 

  94. Johari AP, Kurmvanshi SK, Mohanty S, Nayak SK (2016) Influence of surface modified cellulose microfibrils on the improved mechanical properties of poly (lactic acid). Int J Biol Macromol 84:329–339. https://doi.org/10.1016/j.ijbiomac.2015.12.038

    Article  CAS  PubMed  Google Scholar 

  95. Park J-W, Shin J-H, Shim G-S et al (2019) Mechanical strength enhancement of polylactic acid hybrid composites. Polymers (Basel) 11:349. https://doi.org/10.3390/polym11020349

    Article  CAS  PubMed Central  Google Scholar 

  96. Lizundia E, Fortunati E, Dominici F et al (2016) PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym 142:105–113. https://doi.org/10.1016/j.carbpol.2016.01.041

    Article  CAS  PubMed  Google Scholar 

  97. Yu HY, Zhang H, Song ML et al (2017) From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl Mater Interfaces 9:43920–43938. https://doi.org/10.1021/acsami.7b09102

    Article  CAS  PubMed  Google Scholar 

  98. Yu H, Sun B, Zhang D et al (2014) Reinforcement of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose nanocrystal/silver nanohybrids as bifunctional nanofillers. J Mater Chem B 2:8479–8489. https://doi.org/10.1039/c4tb01372g

    Article  CAS  PubMed  Google Scholar 

  99. Yu HY, Yao JM (2016) Reinforcing properties of bacterial polyester with different cellulose nanocrystals via modulating hydrogen bonds. Compos Sci Technol 136:53–60. https://doi.org/10.1016/j.compscitech.2016.10.004

    Article  CAS  Google Scholar 

  100. Dhar P, Bhasney SM, Kumar A, Katiyar V (2016) Acid functionalized cellulose nanocrystals and its effect on mechanical, thermal, crystallization and surfaces properties of poly (lactic acid) bionanocomposites films: a comprehensive study. Polymer (United Kingdom) 101:75–92. https://doi.org/10.1016/j.polymer.2016.08.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by CNPq (# 305819/2017-8 and #306401/2013-4) and FAPESP (#2018/11277-7). The authors also thank the José Ricardo Nunes de Macedo for the experimental support; UFABC, CAPES (Code 001), REVALORES Strategic Unit, CAPES and Multiuser Central Facilities (CEM-UFABC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derval S. Rosa.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, A.G., Barbosa, R.F.S. & Rosa, D.S. Nanocellulose from Industrial and Agricultural Waste for Further Use in PLA Composites. J Polym Environ 28, 1851–1868 (2020). https://doi.org/10.1007/s10924-020-01731-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01731-w

Keywords

Navigation