Skip to main content
Log in

Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A method to characterize the length (L) of rod-like cellulose nanocrystal (CNC) particles is described. It is based on dynamic light scattering (DLS) and electron microscopy. Measurement of translational diffusion coefficient from DLS along with diameter measurements from electron microscopy is used in Broersma translational diffusion coefficient equation to calculate the CNC particle L. For wood based CNC rods, diameter of 15 nm measured by scanning electron microscopy (SEM) and translational diffusion coefficient of 5.21 × 10−12 m2/s measured by DLS give particle L of 271 nm from Broersma’s relation. This one and other calculated L values for various rod-like particles are in good agreement with the L of the particles measured either by transmission or SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27. doi:10.1021/la001070m

    Article  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626. doi:10.1021/bm0493685

    Article  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054

    Article  Google Scholar 

  • Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33(16):6011–6016. doi:10.1021/ma000417p

    Article  Google Scholar 

  • Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A 377(1–3):297–303

    Article  Google Scholar 

  • Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28(14):6114–6123

    Article  Google Scholar 

  • Broersma S (1960) Viscous force constant for a closed cylinder. J Chem Phys 32:1632

    Article  Google Scholar 

  • Capadona JR, Shanmuganathan K, Trittschuh S, Seidel S, Rowan SJ, Weder C (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10(4):712–716

    Article  Google Scholar 

  • de la Torre JG, Bloomfield VA (1981) Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q Rev Biophys 14(01):81–139

    Article  Google Scholar 

  • De Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13(3):261–270

    Article  Google Scholar 

  • De Souza Lima MM, Wong JT, Paillet M, Borsali R, Pecora R (2002) Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir 19(1):24–29. doi:10.1021/la020475z

    Article  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32

    Article  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315

    Article  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65. doi:10.1021/bm700769p

    Article  Google Scholar 

  • Finsy R (1994) Particle sizing by quasi-elastic light scattering. Adv Colloid Interface Sci 52:79–143

    Article  Google Scholar 

  • Glatter O, Hofer M, Jorde C, Eigner W-D (1985) Interpretation of elastic light-scattering data in real space. J Colloid Interface Sci 105(2):577–586

    Article  Google Scholar 

  • Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18(41):5002–5010

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  Google Scholar 

  • Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402. doi:10.1002/cjce.20298

    Google Scholar 

  • Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F (2005) Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21(5):2034–2037

    Article  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):3358–3393

    Article  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi:10.1002/anie.201001273

    Article  Google Scholar 

  • Kovacs T, Naish V, O’Connor B, Blaise C, Gagné F, Hall L, Trudeau V, Martel P (2010) An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology 4(3):255–270

    Article  Google Scholar 

  • Lehner D, Lindner H, Glatter O (2000) Determination of the translational and rotational diffusion coefficients of rodlike particles using depolarized dynamic light scattering. Langmuir 16(4):1689–1695

    Article  Google Scholar 

  • Maeda T, Fujime S (1985) Dynamic light-scattering study of suspensions of fd virus. Application of a theory of light-scattering spectrum of weakly bending filaments. Macromolecules 18(12):2430–2437

    Article  Google Scholar 

  • Pecora R (2000) Dynamic light scattering measurement of nanometer particles in liquids. J Nanopart Res 2(2):123–131

    Article  Google Scholar 

  • Ramirez L, Dufresne A (2011) A review of cellulose nanocrystals and nanocomposites. Tappi J 10(4):9–16

    Google Scholar 

  • Revol J-F (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2(2):123–134

    Article  Google Scholar 

  • Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites—phase-separation and magnetic-field orientation. Liq Cryst 16(1):127–134

    Article  Google Scholar 

  • Revol J-F, Godbout DL, Gray DG (1997) Solidified liquid crystals of cellulose with optically variable properties. US Patent

  • Terech P, Chazeau L, Cavaille J (1999) A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32(6):1872–1875

    Article  Google Scholar 

  • Tirado MM, de La Torre JG (1979) Translational friction coefficients of rigid, symmetric top macromolecules. Application to circular cylinders. J Chem Phys 71:2581

    Article  Google Scholar 

  • Ureña-Benavides EE, Kitchens CL (2012) Static light scattering of triaxial nanoparticle suspensions in the Rayleigh–Gans–Debye regime: application to cellulose nanocrystals. RSC Adv 2(3):1096–1105

    Article  Google Scholar 

  • van der Zande BM, Dhont JK, Böhmer MR, Philipse AP (2000) Colloidal dispersions of gold rods characterized by dynamic light scattering and electrophoresis. Langmuir 16(2):459–464

    Article  Google Scholar 

  • Wierenga AM, Philipse AP (1997) Low-shear viscosities of (semi-)dilute, aqueous dispersions of charged boehmite rods: dynamic scaling of double layer effects. Langmuir 13(17):4574–4582. doi:10.1021/la9700477

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Alberta Innovates-Bio Solutions and Arboranano Canadian Forest Nanoproducts Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaman Boluk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boluk, Y., Danumah, C. Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy. J Nanopart Res 16, 2174 (2014). https://doi.org/10.1007/s11051-013-2174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2174-4

Keywords

Navigation