Skip to main content
Log in

Damage Identification in Steel Girders of Highway Bridges Utilizing Vibration Based Methods and Convolution Neural Network in the Presence of Noise

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The vibration-based damage identification method utilizes changes in the vibration properties of a structure to detect damages. The presence of noise makes the use of these methods unreliable. Therefore, it is necessary to develop and apply a robust technique in noisy conditions. The main purpose of the proposed method in this study is to investigate the effect of noise on highway bridges and reduce its effects in determining the precise and correct location and severity of damages on these types of bridges. Therefore, a dual-criteria method based on modal flexibility change (MF) and modal strain energy (MSE) damage index is considered as the bases for training convolution neural network (CNN). This method aims to identify more accurate the damage location and intensity with and without the effect of noise. The feasibility of the proposed method is indicated on a validated FE model applied to the portion of the I-40 bridge as a sample of steel girders highway bridge by its application to a range of damage scenarios. The numerical simulation of damage scenarios is utilized to achieve both noise-polluted damage indexes for training CNN. The well-trained CNN is then applied to double-check the location and attain the intensity of unknown single and multiple damages (up to four simultaneous damages) in noisy conditions. The results demonstrate that dual criteria damage indexes along with CNN can practically and accurately identify unspecified location and severity of single and multiple damage scenarios in the presence of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Adapted from Farrar et al. [49, 50])

Fig. 4

(Adapted from Farrar et al. [49, 50])

Fig. 5

(adapted from Farrar et al. [51])

Fig. 6

(Adapted from Farrar et al. [49, 50])

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

(Adapted from Farrar et al. [42,43,44])

Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Availability of Data and Materials

We will provide data and materials to anyone who requests them from us.

References

  1. Beskhyroun, S., Oshima, T., Mikami, S.: Wavelet-based technique for structural damage detection. Struct. Control. Health Monit. 17(5), 473–494 (2010). https://doi.org/10.1002/stc.316

    Article  Google Scholar 

  2. Li, J., Dackermann, U., Xu, Y.L., Samali, B.: Damage identification in civil engineering structures utilizing PCA-compressed residual frequency response functions and neural network ensembles. Struct. Control. Health Monit. 18(2), 207–226 (2011). https://doi.org/10.1002/stc.369

    Article  Google Scholar 

  3. Das, S., Saha, P.: Performance of hybrid decomposition algorithm under heavy noise condition for health monitoring of structure. J. Civ. Struct. Heal. Monit. 10, 679–692 (2020). https://doi.org/10.1007/s13349-020-00412-5

    Article  Google Scholar 

  4. Das, S., Saha, P.: Structural health monitoring techniques implemented on IASC–ASCE benchmark problem: a review. J. Civ. Struct. Heal. Monit. 8, 689–718 (2018). https://doi.org/10.1007/s13349-018-0292-5

    Article  Google Scholar 

  5. Li, L., Betti, R.: A machine learning-based data augmentation strategy for structural damage classification in civil infrastructure system. J. Civ. Struct. Health Monit. (2023). https://doi.org/10.1007/s13349-023-00705-5

    Article  Google Scholar 

  6. Bayata, M., Ahmadi, H.R., Mahdavib, N.: Application of power spectral density function for damage diagnosis of bridge piers. Struct. Eng. Mech. 71(1), 57–63 (2019). https://doi.org/10.12989/sem.2019.71.1.057

    Article  Google Scholar 

  7. Khodabandehlou, H., Pekcan, G., Fadali, M.S.: Vibration-based structural condition assessment using convolution neural networks. Struct. Control. Health Monit. 26(2), e2308 (2019). https://doi.org/10.1002/stc.2308

    Article  Google Scholar 

  8. Mousavi, Z., Varahram, S., Ettefagh, M.M., Sadeghi, M.H., Razavi, S.N.: Deep neural networks–based damage detection using vibration signals of finite element model and real intact state: an evaluation via a lab-scale offshore jacket structure. Struct. Health Monit. 20(1), 379–405 (2021). https://doi.org/10.1177/1475921720932614

    Article  Google Scholar 

  9. Azimi, M., Eslamlou, A.D., Pekcan, G.: Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review. Sensors 20(10), 2778 (2020). https://doi.org/10.3390/s20102778

    Article  Google Scholar 

  10. Wang, Z., Cha, Y.-J.: Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect damage. Struct. Health Monit. 20(1), 406–425 (2021). https://doi.org/10.1177/1475921720934051

    Article  Google Scholar 

  11. Wang, Z., Cha, Y.J.: Unsupervised machine and deep learning methods for structural damage detection: a comparative study. Eng. Rep. (2022). https://doi.org/10.1002/eng2.12551

    Article  Google Scholar 

  12. Cha, Y.-J., Wang, Z.: Unsupervised novelty detection–based structural damage localization using a density peaks-based fast clustering algorithm. Struct. Health Monit. 17(2), 313–324 (2018). https://doi.org/10.1177/1475921717691260

    Article  Google Scholar 

  13. Cha, Y.J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civ. Infrastruct. Eng. 32(5), 361–378 (2017). https://doi.org/10.1111/mice.12263

    Article  Google Scholar 

  14. Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S., Büyüköztürk, O.: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput.-Aided Civ. Infrastruct Eng. 33(9), 731–747 (2018). https://doi.org/10.1111/mice.12334

    Article  Google Scholar 

  15. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., Inman, D.J.: A review of vibration-based damage detection in civil structures: from traditional methods to Machine Learning and Deep Learning applications. Mech. Syst. Signal Process. 147, 107077 (2021). https://doi.org/10.1016/j.ymssp.2020.107077

    Article  Google Scholar 

  16. Zhang, H., Lin, J., Hua, J., Gao, F., Tong, T.: Data anomaly detection for bridge SHM based on CNN combined with statistic features. J. Nondestruct. Eval. 41(1), 28 (2022). https://doi.org/10.1007/s10921-022-00857-2

    Article  Google Scholar 

  17. Shih, H.W., Thambiratnam, D., Chan, T.: Vibration based structural damage detection in flexural members using multi-criteria approach. Sound Vib. 323(3–5), 645–661 (2009). https://doi.org/10.1016/j.jsv.2009.01.019

    Article  Google Scholar 

  18. Cornwell, P., Doebling, S.W., Farrar, C.R.: Application of the strain energy damage detection method to plate-like structures. Sound Vib. 224(2), 359–374 (1999). https://doi.org/10.1006/jsvi.1999.2163

    Article  Google Scholar 

  19. Rizos, P., Aspragathos, N., Dimarogonas, A.: Identification of crack location and magnitude in a cantilever beam from the vibration modes. Sound Vib. 138(3), 381–388 (1990). https://doi.org/10.1016/0022-460X(90)90593-O

    Article  Google Scholar 

  20. Hong, J.-C., Kim, Y., Lee, H., Lee, Y.: Damage detection using the Lipschitz exponent estimated by the wavelet transform: applications to vibration modes of a beam. Int. J. Solids Struct. 39(7), 1803–1816 (2002). https://doi.org/10.1016/S0020-7683(01)00279-7

    Article  Google Scholar 

  21. Contursi, T., Messina, A., Williams, E.J.: A multiple-damage location assurance criterion based on natural frequency changes. J. Vib. Control 4(5), 619–633 (1998). https://doi.org/10.1177/107754639800400505

    Article  Google Scholar 

  22. Shi, Z., Law, S., Zhang, L.: Damage localization by directly using incomplete mode shapes. J. Eng. Mech. 126(6), 656–660 (2000). https://doi.org/10.1061/(ASCE)0733-9399(2000)126:6(656)

    Article  Google Scholar 

  23. Ahmadi, H.R., Anvari, D.: Health monitoring of pedestrian truss bridges using cone-shaped kernel distribution. Smart Struct. Syst. 22(6), 699–709 (2018). https://doi.org/10.12989/sss.2018.22.6.699

    Article  Google Scholar 

  24. Shih, W., Thambiratnam, D., Chan, T.: Damage detection in truss bridges using vibration based multi-criteria approach. Struct. Eng. Mech. 39(2), 187–206 (2011). https://doi.org/10.12989/sem.2011.39.2.187

    Article  Google Scholar 

  25. Caicedo, J.M., Dyke, S.J.: Experimental validation of structural health monitoring for flexible bridge structures. Struct. Control. Health Monit. 12(3–4), 425–443 (2005). https://doi.org/10.1002/stc.78

    Article  Google Scholar 

  26. Jayasundara, N., Thambiratnam, D., Chan, T., Nguyen, A.: Vibration-based dual-criteria approach for damage detection in arch bridges. Struct. Health Monit. 18(5–6), 2004–2019 (2019). https://doi.org/10.1177/1475921718810011

    Article  Google Scholar 

  27. Tan, Z.X., Thambiratnam, D.P., Chan, T.H., Gordan, M., Abdul, R.H.: Damage detection in steel-concrete composite bridge using vibration characteristics and artificial neural network. Struct. Infrastruct. Eng. 16(9), 1247–1261 (2020). https://doi.org/10.1080/15732479.2019.1696378

    Article  Google Scholar 

  28. Nick, H., Aziminejad, A., Hosseini, M.H., Laknejadi, K.: Damage identification in steel girder bridges using modal strain energy-based damage index method and artificial neural network. Eng. Fail. Anal. 119, 105010 (2021). https://doi.org/10.1016/j.engfailanal.2020.105010

    Article  Google Scholar 

  29. Nick, H., Aziminejad, A.: Vibration-based damage identification in steel girder bridges using artificial neural network under noisy conditions. J. Nondestruct. Eval. 40, 1–22 (2021). https://doi.org/10.1007/s10921-020-00744-8

    Article  Google Scholar 

  30. Jayasundara, N., Thambiratnam, D., Chan, T., Nguyen, A.: Damage detection and quantification in deck type arch bridges using vibration based methods and artificial neural networks. Eng. Fail. Anal. 109, 104265 (2020). https://doi.org/10.1016/j.engfailanal.2019.104265

    Article  Google Scholar 

  31. Pailes, B.M., Gucunski, N.: Understanding multi-modal non-destructive testing data through the evaluation of twelve deteriorating reinforced concrete bridge decks. J. Nondestruct. Eval. 34, 1–14 (2015). https://doi.org/10.1007/s10921-015-0308-6

    Article  Google Scholar 

  32. Pandey, A., Biswas, M.: Damage detection in structures using changes in flexibility. Sound Vib. 169(1), 3–17 (1994). https://doi.org/10.1006/jsvi.1994.1002

    Article  Google Scholar 

  33. Sung, S.-H., Koo, K.-Y., Jung, H.-J.: Modal flexibility-based damage detection of cantilever beam-type structures using baseline modification. Sound Vib. 333(18), 4123–4138 (2014). https://doi.org/10.1016/j.jsv.2014.04.056

    Article  Google Scholar 

  34. Gao, Y., Spencer, B.: Damage localization under ambient vibration using changes in flexibility. Earthq. Eng. Eng. Vib. 1, 136–144 (2002). https://doi.org/10.1007/s11803-002-0017-x

    Article  Google Scholar 

  35. Moragaspitiya, H.P., Thambiratnam, D.P., Perera, N.J., Chan, T.H.: Development of a vibration based method to update axial shortening of vertical load bearing elements in reinforced concrete buildings. Eng. Struct. 46, 49–61 (2013). https://doi.org/10.1016/j.engstruct.2012.07.010

    Article  Google Scholar 

  36. Toksoy, T., Aktan, A.: Bridge-condition assessment by modal flexibility. Exp. Mech. 34, 271–278 (1994). https://doi.org/10.1007/BF02319765

    Article  Google Scholar 

  37. Stubbs, N., Kim, J.-T., Farrar, C., eds.: Field verification of a nondestructive damage localization and severity estimation algorithm. Proceedings-SPIE the international society for optical engineering; 1995: SPIE International Society for Optical.

  38. Shi, Z., Law, S., Zhang, L.: Structural damage localization from modal strain energy change. Sound Vib. 218(5), 825–844 (1998). https://doi.org/10.1006/jsvi.1998.1878

    Article  Google Scholar 

  39. Law, S., Shi, Z., Zhang, L.: Structural damage detection from incomplete and noisy modal test data. J. Eng. Mech. 124(11), 1280–1288 (1998). https://doi.org/10.1061/(ASCE)0733-9399(1998)124:11(1280)

    Article  Google Scholar 

  40. Ko, J., Sun, Z., Ni, Y.: Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun Bridge. Eng. Struct. 24(7), 857–868 (2002). https://doi.org/10.1016/S0141-0296(02)00024-X

    Article  Google Scholar 

  41. Xu, H., Humar, J.: Damage detection in a girder bridge by artificial neural network technique. Comput-Aided Civ Infrastruct Eng. 21(6), 450–464 (2006). https://doi.org/10.1111/j.1467-8667.2006.00449.x

    Article  Google Scholar 

  42. Nick, H., Ashrafpoor, A., Aziminejad, A., eds.: Damage identification in steel frames using dual-criteria vibration-based damage detection method and artificial neural network. Structures. Elsevier (2023)

  43. Cha, Y.-J., Mostafavi, A., Benipal, S.S.: DNoiseNet: deep learning-based feedback active noise control in various noisy environments. Eng. Appl. Artif. Intell. 121, 105971 (2023). https://doi.org/10.1016/j.engappai.2023.105971

    Article  Google Scholar 

  44. Mostafavi, A., Cha, Y.-J.: Deep learning-based active noise control on construction sites. Autom. Constr. 151, 104885 (2023). https://doi.org/10.1016/j.autcon.2023.104885

    Article  Google Scholar 

  45. Diao, Y., Lv, J., Wang, Q., Li, X., Xu, J.: Structural damage identification based on variational mode decomposition–Hilbert transform and CNN. J. Civ. Struct. Health Monit. (2023). https://doi.org/10.1007/s13349-023-00715-3

    Article  Google Scholar 

  46. Jing, L., Zhao, M., Li, P., Xu, X.: A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox. Measurement 111, 1–10 (2017). https://doi.org/10.1016/j.measurement.2017.07.017

    Article  Google Scholar 

  47. Dubey, S.R., Chakraborty, S., Roy, S.K., Mukherjee, S., Singh, S.K., Chaudhuri, B.B.: diffGrad: an optimization method for convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 31(11), 4500–4511 (2019). https://doi.org/10.1109/TNNLS.2019.2955777

    Article  MathSciNet  Google Scholar 

  48. Stubbs, N., Garcia, G.: Application of pattern recognition to damage localization. Comput.-Aided Civ. Infrastruct. Eng. 11(6), 395–409 (1996). https://doi.org/10.1111/j.1467-8667.1996.tb00352.x

    Article  Google Scholar 

  49. Farrar, C.R., Jauregui, D.A.: Comparative study of damage identification algorithms applied to a bridge: I. Experiment. Smart Mater. Struct. 7(5), 704 (1998). https://doi.org/10.1088/0964-1726/7/5/013

    Article  Google Scholar 

  50. Farrar, C.R., Jauregui, D.A.: Comparative study of damage identification algorithms applied to a bridge: II. Numerical study. Smart Mater. Struct. 7(5), 720 (1998)

    Article  Google Scholar 

  51. Farrar, C., Jauregui, D.: Damage detection algorithms applied to experimental modal data from the I-40 bridge. Los Alamos National Lab.(LANL), Los Alamos, NM (United States) (1996)

  52. Farrar, C.R., Baker, W., Bell, T., Cone, K., Darling, T., Duffey, T., et al.: Dynamic characterization and damage detection in the I-40 bridge over the Rio Grande. Los Alamos National Lab., NM (United States) (1994)

  53. ABAQUS. 6-14-4 ed: SIMULIA; 2014.

  54. Tan, Z.X., Thambiratnam, D., Chan, T., Razak, H.A.: Detecting damage in steel beams using modal strain energy based damage index and Artificial Neural Network. Eng. Fail. Anal. 79, 253–262 (2017)

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SZ is the main author and AA is the corresponding author. Other authors act as supervisors.

Corresponding author

Correspondence to Armin Aziminejad.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalaghi, S., Aziminejad, A., Rahami, H. et al. Damage Identification in Steel Girders of Highway Bridges Utilizing Vibration Based Methods and Convolution Neural Network in the Presence of Noise. J Nondestruct Eval 43, 39 (2024). https://doi.org/10.1007/s10921-024-01057-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-024-01057-w

Keywords

Navigation