Skip to main content
Log in

Vibration-Based Damage Identification in Steel Girder Bridges Using Artificial Neural Network Under Noisy Conditions

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The vibration-based damage identification techniques use changes in modal properties of structures to detect damages. However, the results of these methods are not reliable under noise. Therefore, it is essential to clarify which method performs vigorous under noisy conditions. In this study, three damage detection methods, called modal strain energy-based damage index, modal flexibility, and modal curvature, are considered to detect damage with and without the presence of noise. The feasibility of these methods is demonstrated by applying a range of damage scenarios in the validated FE model of the I-40 Bridge. The info of the only first three bending mode shapes of the bridge is used to calculate damage indices. The outcome showed while all three methods were capable of detecting damage in the absence of noise, only the modal flexibility method could locate damages in the presence of noise. Thus, an approach is proposed to eliminate noise and quantify damage magnitude using an artificial neural network (ANN) and modal flexibility method. The modal flexibility damage index of different damage severities was contaminated with various noise levels used as input parameters to train the ANN. Results indicate the adequate performance of the trained ANN in noise-canceling and damage magnitude estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Farrar et al. [58, 59])

Fig. 2

Adapted from Farrar et al. [58, 59])

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Beskhyroun, S., Oshima, T., Mikami, S.: Wavelet-based technique for structural damage detection. Struct. Control Health Monit. 17(5), 473–494 (2010)

    Google Scholar 

  2. Li, J., Dackermann, U., Xu, Y.L., Samali, B.: Damage identification in civil engineering structures utilizing PCA-compressed residual frequency response functions and neural network ensembles. Struct. Control Health Monit. 18(2), 207–226 (2011)

    Article  Google Scholar 

  3. Beskhyroun, S., Wegner, L.D., Sparling, B.F.: New methodology for the application of vibration-based damage detection techniques. Struct. Control Health Monit. 19(8), 632–649 (2012)

    Article  Google Scholar 

  4. Eftekhar Azam, S., Rageh, A., Linzell, D.: Damage detection in structural systems utilizing artificial neural networks and proper orthogonal decomposition. Struct. Control Health Monit. 26(2), e2288 (2019)

    Article  Google Scholar 

  5. Wang, Y., Thambiratnam, D.P., Chan, T., Nguyen, A.: Damage detection in asymmetric buildings using vibration-based techniques. Struct. Control Health Monit. 25(5), e2148 (2018)

    Article  Google Scholar 

  6. Rahai, A., Bakhtiari-Nejad, F., Esfandiari, A.: Damage assessment of structure using incomplete measured mode shapes. Struct. Control Health Monit. 14(5), 808–829 (2007)

    Article  Google Scholar 

  7. OBrien, E.J., Malekjafarian, A.: A mode shape-based damage detection approach using laser measurement from a vehicle crossing a simply supported bridge. Struct. Control Health Monit. 23(10), 1273–1286 (2016)

    Article  Google Scholar 

  8. Nguyen, K.-D., Chan, T.H., Thambiratnam, D.P.: Structural damage identification based on change in geometric modal strain energy–eigenvalue ratio. Smart Mater. Struct. 25(7), 075032 (2016)

    Article  Google Scholar 

  9. Le, N.T., Thambiratnam, D., Nguyen, A., Chan, T.H.: A new method for locating and quantifying damage in beams from static deflection changes. Eng. Struct. 180, 779–792 (2019)

    Article  Google Scholar 

  10. Fan, W., Qiao, P.: Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10(1), 83–111 (2011)

    Article  Google Scholar 

  11. Rucevskis, S., Janeliukstis, R., Akishin, P., Chate, A.: Mode shape-based damage detection in plate structure without baseline data. Struct. Control Health Monit. 23(9), 1180–1193 (2016)

    Article  Google Scholar 

  12. Kim, J.-T., Ryu, Y.-S., Cho, H.-M., Stubbs, N.: Damage identification in beam-type structures: frequency-based method vs mode-shape-based method. Eng. Struct. 25(1), 57–67 (2003)

    Article  Google Scholar 

  13. Ooijevaar, T., Loendersloot, R., Warnet, L., de Boer, A., Akkerman, R.: Vibration based Structural Health Monitoring of a composite T-beam. Compos. Struct. 92(9), 2007–2015 (2010)

    Article  Google Scholar 

  14. Pandey, A.K., Biswas, M.: Experimental verification of flexibility difference method for locating damage in structures. J. Sound Vib. 184(2), 311–328 (1995)

    Article  Google Scholar 

  15. Raghuprasad, B., Lakshmanan, N., Gopalakrishnan, N., Sathishkumar, K., Sreekala, R.: Damage identification of beam-like structures with contiguous and distributed damage. Struct. Control Health Monit. 20(4), 496–519 (2013)

    Article  Google Scholar 

  16. Sung, S.H., Koo, K.Y., Jung, H.J.: Modal flexibility-based damage detection of cantilever beam-type structures using baseline modification. J. Sound Vib. 333(18), 4123–4138 (2014)

    Article  Google Scholar 

  17. Cornwell, P., Doebling, S.W., Farrar, C.R.: Application of the strain energy damage detection method to plate-like structures. J. Sound Vib. 224(2), 359–374 (1999)

    Article  Google Scholar 

  18. Shih, H.W., Thambiratnam, D.P., Chan, T.H.: Vibration based structural damage detection in flexural members using multi-criteria approach. J. Sound Vib. 323(3–5), 645–661 (2009)

    Article  Google Scholar 

  19. Magalhães, F., Cunha, A., Caetano, E.: Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection. Mech. Syst. Signal Process. 28, 212–228 (2012)

    Article  Google Scholar 

  20. Kim, J.-T., Park, J.-H., Lee, B.-J.: Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions. Eng. Struct. 29(7), 1354–1365 (2007)

    Article  Google Scholar 

  21. Teughels, A., De Roeck, G.: Structural damage identification of the highway bridge Z24 by FE model updating. J. Sound Vib. 278(3), 589–610 (2004)

    Article  Google Scholar 

  22. Koto, Y., Konishi, T., Sekiya, H., Miki, C.: Monitoring local damage due to fatigue in plate girder bridge. J. Sound Vib. 438, 238–250 (2019)

    Article  Google Scholar 

  23. Huth, O., Feltrin, G., Maeck, J., Kilic, N., Motavalli, M.: Damage identification using modal data: Experiences on a prestressed concrete bridge. J. Struct. Eng. 131(12), 1898–1910 (2005)

    Article  Google Scholar 

  24. Caicedo, J.M., Dyke, S.J.: Experimental validation of structural health monitoring for flexible bridge structures. Struct. Control Health Monit. 12(3–4), 425–443 (2005)

    Article  Google Scholar 

  25. Xiong, W., Kong, B., Tang, P., Ye, J.: Vibration-based identification for the presence of scouring of cable-stayed bridges. J. Aerospace Eng. 31(2), 04018007 (2018)

    Article  Google Scholar 

  26. Kopsaftopoulos, F., Fassois, S.: Vibration based health monitoring for a lightweight truss structure: experimental assessment of several statistical time series methods. Mech. Syst. Signal Process. 24(7), 1977–1997 (2010)

    Article  Google Scholar 

  27. Montazer, M., Seyedpoor, S.M.: A new flexibility based damage index for damage detection of truss structures. Shock Vib. 1, 12 (2014)

    Google Scholar 

  28. Stubbs, N., Kim, J.-T., & Farrar, C. (1995). Field verification of a nondestructive damage localization and severity estimation algorithm. Paper presented at the Proceedings-SPIE the international society for optical engineering.

  29. Stubbs, N., Kim, J.-T.: Damage localization in structures without baseline modal parameters. AIAA J. 34(8), 1644–1649 (1996)

    Article  MATH  Google Scholar 

  30. Kim, J.-T., Stubbs, N.: Improved damage identification method based on modal information. J. Sound Vib. 252(2), 223–238 (2002)

    Article  Google Scholar 

  31. Park, S., Stubbs, N., Bolton, R., Choi, S., Sikorsky, C.: Field verification of the damage index method in a concrete box-girder bridge via visual inspection. Comput.-Aided Civil Infrastruct. Eng. 16(1), 58–70 (2001)

    Article  Google Scholar 

  32. Samali, B., Li, J., Choi, F., Crews, K.: Application of the damage index method for plate-like structures to timber bridges. Struct. Control Health Monit. 17(8), 849–871 (2010)

    Article  Google Scholar 

  33. Bagchi, A., Humar, J., Xu, H., Noman, A.S.: Model-based damage identification in a continuous bridge using vibration data. J. Perform. Construct. Facil. 24(2), 148–158 (2010)

    Article  Google Scholar 

  34. Wahalathantri, B.L., Thambiratnam, D.P., Chan, T.H., Fawzia, S.: Vibration based baseline updating method to localize crack formation and propagation in reinforced concrete members. J. Sound Vib. 344, 258–276 (2015)

    Article  Google Scholar 

  35. Eraky, A., Anwar, A.M., Saad, A., Abdo, A.: Damage detection of flexural structural systems using damage index method–experimental approach. Alex. Eng. J. 54(3), 497–507 (2015)

    Article  Google Scholar 

  36. Tan, Z., Thambiratnam, D., Chan, T., Razak, H.A.: Detecting damage in steel beams using modal strain energy based damage index and Artificial Neural Network. Eng. Failure Anal. 79, 253–262 (2017)

    Article  Google Scholar 

  37. Pandey, A.K., Biswas, M.: Damage detection in structures using changes in flexibility. J. Sound Vib. 169(1), 3–17 (1994)

    Article  MATH  Google Scholar 

  38. Toksoy, T., Aktan, A.E.: Bridge-condition assessment by modal flexibility. Exp. Mech. 34(3), 271–278 (1994)

    Article  Google Scholar 

  39. Gao, Y., Spencer, B.F.: Damage localization under ambient vibration using changes in flexibility. Earthq. Eng. Eng. Vib. 1(1), 136–144 (2002)

    Article  Google Scholar 

  40. Patjawit, A., Kanok-Nukulchai, W.: Health monitoring of highway bridges based on a Global Flexibility Index. Eng. Struct. 27(9), 1385–1391 (2005)

    Article  Google Scholar 

  41. Yan, A., Golinval, J.C.: Structural damage localization by combining flexibility and stiffness methods. Eng. Struct. 27(12), 1752–1761 (2005)

    Article  Google Scholar 

  42. Catbas, F.N., Brown, D.L., Aktan, A.E.: Use of modal flexibility for damage detection and condition assessment: case studies and demonstrations on large structures. J. Struct. Eng. 132(11), 1699–1712 (2006)

    Article  Google Scholar 

  43. Catbas, F.N., Gul, M., Burkett, J.L.: Damage assessment using flexibility and flexibility-based curvature for structural health monitoring. Smart Mater. Struct. 17(1), 015024 (2007)

    Article  Google Scholar 

  44. Ni, Y.Q., Zhou, H.F., Chan, K.C., Ko, J.M.: Modal flexibility analysis of cable-stayed Ting Kau Bridge for damage identification. Comput.-Aided Civil Infrastruct. Eng. 23(3), 223–236 (2008)

    Article  Google Scholar 

  45. Moragaspitiya, H.P., Thambiratnam, D.P., Perera, N.J., Chan, T.H.: Development of a vibration based method to update axial shortening of vertical load bearing elements in reinforced concrete buildings. Eng. Struct. 46, 49–61 (2013)

    Article  Google Scholar 

  46. Yang, T., Li, J., Du, Y.: Delamination detection in composite structures based on modal flexibility curvature. J. Reinf. Plast. Compos. 35(10), 853–863 (2016)

    Article  Google Scholar 

  47. Wickramasinghe, W.R., Thambiratnam, D.P., Chan, T.H., Nguyen, T.: Vibration characteristics and damage detection in a suspension bridge. J. Sound Vib. 375, 254–274 (2016)

    Article  Google Scholar 

  48. Pandey, A.K., Biswas, M., Samman, M.M.: Damage detection from changes in curvature mode shapes. J. Sound Vib. 145(2), 321–332 (1991)

    Article  Google Scholar 

  49. Wahab, M.A., De Roeck, G.: Damage detection in bridges using modal curvatures: application to a real damage scenario. J. Sound Vib. 226(2), 217–235 (1999)

    Article  Google Scholar 

  50. Dutta, A., Talukdar, S.: Damage detection in bridges using accurate modal parameters. Finite Elements Anal. Des. 40(3), 287–304 (2004)

    Article  Google Scholar 

  51. Zhang, J., Peng, H., You, C.H., Deng, Y.L., Zhang, H.Y.: Damage detection of plane member structures based on modal curvature difference method. Adv. Mater. Res. 163, 2848–2851 (2011)

    Google Scholar 

  52. Shiradhonkar, S.R., Shrikhande, M.: Seismic damage detection in a building frame via finite element model updating. Comput. Struct. 89(23–24), 2425–2438 (2011)

    Google Scholar 

  53. Dawari, V.B., Vesmawala, G.R.: Structural damage identification using modal curvature differences. IOSR J. Mech. Civil Eng. 4, 33–38 (2013)

    Google Scholar 

  54. Cao, M., Radzieński, M., Xu, W., Ostachowicz, W.: Identification of multiple damage in beams based on robust curvature mode shapes. Mech. Syst. Signal Process. 46(2), 468–480 (2014)

    Article  Google Scholar 

  55. Dessi, D., Camerlengo, G.: Damage identification techniques via modal curvature analysis: overview and comparison. Mech. Syst. Signal Process. 52, 181–205 (2015)

    Article  Google Scholar 

  56. Ciambella, J., Vestroni, F.: The use of modal curvatures for damage localization in beam-type structures. J. Sound Vib. 340, 126–137 (2015)

    Article  Google Scholar 

  57. Ciambella, J., Pau, A., Vestroni, F.: Modal curvature-based damage localization in weakly damaged continuous beams. Mech. Syst. Signal Process. 121, 171–182 (2019)

    Article  Google Scholar 

  58. Farrar, C.R., Jauregui, D.A.: Comparative study of damage identification algorithms applied to a bridge: I. Experiment. Smart Mater. Struct. 7(5), 704 (1998)

    Article  Google Scholar 

  59. Farrar, C.R., Jauregui, D.A.: Comparative study of damage identification algorithms applied to a bridge: II. Numerical study. Smart Mater. Struct. 7(5), 720 (1998)

    Article  Google Scholar 

  60. Doebling, S. W., Farrar, C. R., Prime, M. B., & Shevitz, D. W. (1996). Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review (No. LA-13070-MS). Los Alamos National Lab., NM (United States).

  61. Alvandi, A., Cremona, C.: Assessment of vibration-based damage identification techniques. J. Sound Vib. 292(1–2), 179–202 (2006)

    Article  Google Scholar 

  62. Choi, F.C., Li, J., Samali, B., Crews, K.: Application of the modified damage index method to timber beams. Eng. Struct. 30(4), 1124–1145 (2008)

    Article  Google Scholar 

  63. Zhou, Z., Wegner, L.D., Sparling, B.F.: Vibration-based detection of small-scale damage on a bridge deck. J. Struct. Eng. 133(9), 1257–1267 (2007)

    Article  Google Scholar 

  64. Cruz, P.J., Salgado, R.: Performance of vibration-based damage detection methods in bridges. Comput.-Aided Civil Infrastruct. Eng. 24(1), 62–79 (2009)

    Article  Google Scholar 

  65. Altunışık, A.C., Okur, F.Y., Karaca, S., Kahya, V.: Vibration-based damage detection in beam structures with multiple cracks: modal curvature vs. modal flexibility methods. Nondestruct. Test. Eval. 34(1), 33–53 (2019)

    Article  Google Scholar 

  66. Shih, H., Thambiratnam, D., Chan, T.: Damage detection in slab-on-girder bridges using vibration characteristics. Struct. Control Health Monit. 20(10), 1271–1290 (2013)

    Article  Google Scholar 

  67. Jayasundara, N., Thambiratnam, D., Chan, T., Nguyen, A.: Vibration-based dual-criteria approach for damage detection in arch bridges. Struct. Health Monit. 18(5–6), 2004–2019 (2019)

    Article  Google Scholar 

  68. Shi, Z., Law, S.S., Zhang, L.: Structural damage detection from modal strain energy change. J. Eng. Mech. 126(12), 1216–1223 (2000)

    Google Scholar 

  69. Farrar, C. R., Baker, W. E., Bell, T. M., Cone, K. M., Darling, T. W., Duffey, T. A., ... & Migliori, A. (1994). Dynamic characterization and damage detection in the I-40 bridge over the Rio Grande (No. LA-12767-MS). Los Alamos National Lab., NM (United States).

  70. Yin, T., Jiang, Q.H., Yuen, K.V.: Vibration-based damage detection for structural connections using incomplete modal data by Bayesian approach and model reduction technique. Eng. Struct. 132, 260–277 (2017)

    Article  Google Scholar 

  71. Baneen, U., Kinkaid, N.M., Guivant, J.E., Herszberg, I.: Vibration based damage detection of a beam-type structure using noise suppression method. J. Sound Vib. 331(8), 1777–1788 (2012)

    Article  Google Scholar 

  72. Kostić, B., Gül, M.: Vibration-based damage detection of bridges under varying temperature effects using time-series analysis and artificial neural networks. J. Bridge Eng. 22(10), 04017065 (2017)

    Article  Google Scholar 

  73. Paral, A., Roy, D.K.S., Samanta, A.K.: Application of a mode shape derivative-based damage index in artificial neural network for structural damage identification in shear frame building. J. Civil Struct. Health Monit. 9(3), 411–423 (2019)

    Article  Google Scholar 

  74. Weinstein, J.C., Sanayei, M., Brenner, B.R.: Bridge damage identification using artificial neural networks. J. Bridge Eng. 23(11), 04018084 (2018)

    Article  Google Scholar 

  75. Jin, C., Jang, S., Sun, X., Li, J., Christenson, R.: Damage detection of a highway bridge under severe temperature changes using extended Kalman filter trained neural network. J. Civil Struct. Health Monit. 6(3), 545–560 (2016)

    Article  Google Scholar 

  76. Tan, Z.X., Thambiratnam, D.P., Chan, T.H., Gordan, M., Abdul Razak, H.: Damage detection in steel-concrete composite bridge using vibration characteristics and artificial neural network. Struct. Infrastruct. Eng. 16, 1247–1261 (2019)

    Article  Google Scholar 

  77. Rafiei, M.H., Adeli, H.: A novel machine learning-based algorithm to detect damage in high-rise building structures. Struct. Des. Tall Special Build. 26(18), e1400 (2017)

    Article  Google Scholar 

  78. Kim, H.S., Chun, Y.S.: Structural damage assessment of building structures using dynamic experimental data. Struct. Design Tall Special Build. 13(1), 1–8 (2004)

    Article  Google Scholar 

  79. Vahedi, M., Khoshnoudian, F., Hsu, T.Y., Partovi Mehr, N.: Transfer function-based Bayesian damage detection under seismic excitation. Struct. Des. Tall Special Build. 28(12), e1619 (2019)

    Article  Google Scholar 

  80. MATLAB: 9.7.0.713579 (R2017b). The MathWorks Inc., Natick, Massachusetts (2017)

  81. ABAQUS: User’s Manual, Version 6.14–1, 224 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Aziminejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nick, H., Aziminejad, A. Vibration-Based Damage Identification in Steel Girder Bridges Using Artificial Neural Network Under Noisy Conditions. J Nondestruct Eval 40, 15 (2021). https://doi.org/10.1007/s10921-020-00744-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00744-8

Keywords

Navigation