Skip to main content
Log in

Unconditional Convergence of Conservative Spectral Galerkin Methods for the Coupled Fractional Nonlinear Klein–Gordon–Schrödinger Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, two novel classes of structure-preserving spectral Galerkin methods are proposed which based on the Crank–Nicolson scheme and the exponential scalar auxiliary variable method respectively, for solving the coupled fractional nonlinear Klein–Gordon–Schrödinger equation. The paper focuses on the theoretical analyses and computational efficiency of the proposed schemes, the Crank–Nicoloson scheme is proved to be unconditionally convergent and has maximum-norm boundness of numerical solutions. The exponential scalar auxiliary variable scheme is linearly implicit and decoupled, but lack of the maximum-norm boundness, also, the energy structure is modified. Subsequently, the efficient implementations of the proposed schemes are introduced in detail. Both the theoretical analyses and the numerical comparisons show that the proposed spectral Galerkin methods have high efficiency in long-time computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Alfimov, G., Pierantozzi, T., Vázquez, L.: Numerical study of a fractional sine-Gordon equation. Fract. Differ. Appl. 4, 153–162 (2004)

    MATH  Google Scholar 

  2. Ainsworth, M., Mao, Z.: Analysis and approximation of a fractional Cahn–Hilliard equation. SIAM J. Numer. Anal. 55, 1689–1718 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. An, J., Cao, W., Zhang, Z.: An efficient spectral Petrov–Galerkin method for nonlinear Hamiltonian systems. Commun. Comput. Phys. 26, 1249–1273 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Browder, F.: Existence and uniqueness theorems for solutions of nonlinear boundary value problems. In: Application of Nonlinear Partial Differential Equations. Proceedings of Symposia in Applied Mathematics, vol. 17, pp. 24-49 (1965)

  5. Boulenger, T., Himmelsbach, D., Lenzmann, E.: Blowup for fractional NLS. J. Funct. Anal. 271, 2569–2603 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brugnano, L., Iavernaro, F.: Line Integral Methods for Conservative Problems. Chapman Hall/CRC, Boca Raton (2016)

    Book  MATH  Google Scholar 

  7. Bao, W., Zhao, X.: A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein–Gordon–Schrödinger equations in the nonrelativistic limit regime. Numer. Math. 135, 833–873 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feng, K., Qin, M.: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  9. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

    Article  MATH  Google Scholar 

  10. Fu, H., Liu, H., Wang, H.: A finite volume method for two-dimensional Riemann–Liouville space-fractional diffusion equation and its efficient implementation. J. Comput. Phys. 388, 316–334 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, X., Liu, H., Ma, S.: Mass- and energy-conserved numerical schemes for nonlinear Schrödinger equations. Commun. Comput. Phys. 26, 1365–1396 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fu, Y., Cai, W., Wang, Y.: Structure-preserving algorithms for the two-dimensional fractional Klein–Gordon–Schrödinger equation. Appl. Numer. Math. 156, 77–93 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  14. Hajaiej, H., Yu, X., Zhai, Z.: Fractional Gagliardo–Nirenberg and hardy inequalities under Lorentz norms. J. Math. Anal. Appl. 396, 569–577 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, J., Nie, N., Tang, Y.: A second order finite difference-spectral method for space fractional diffusion equations. Sci. China Math. 57, 1303–1317 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, D., Cai, W., Song, Y., Wang, Y.: A fourth-order dissipation-preserving algorithm with fast implementation for space fractional nonlinear damped wave equations. Commun. Nonlinear Sci. Numer. Simul. 91, 105432 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, D., Cai, W., Gu, X., Wang, Y.: Efficient energy preserving Galerkin–Legendre spectral methods for fractional nonlinear Schrödinger equation with wave operator. Appl. Numer. Math. 172, 608–628 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ionescu, A., Pusateri, F.: Nonlinear fractional Schrödinger equations in one dimension. J. Funct. Anal. 266, 139–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kirkpatrick, K., Lenzmann, E., Staffilani, G.: On the continuum limit for discrete NLS with long-range lattice interactions. Commun. Math. Phys. 317, 563–591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Longhi, S.: Fractional Schrödinger equation in optics. Opt. Lett. 40, 1117–1120 (2015)

    Article  Google Scholar 

  22. Lu, K., Wang, B.: Global attractors for the Klein–Gordon–Schrödinger equation in unbounded domains. J. Differ. Equ. 170, 281–316 (2001)

    Article  MATH  Google Scholar 

  23. Li, M., Huang, C., Zhao, Y.: Fast conservative numerical algorithm for the coupled fractional Klein–Gordon–Schrödinger equation. Numer. Algorithm 84, 1081–1119 (2020)

    Article  MATH  Google Scholar 

  24. Liu, Z., Li, X.: The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing. SIAM J. Sci. Comput. 42, B630–B655 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mendez, A.: On the propagation of regularity for solutions of the fractional Korteweg-de Vries equation. J. Differ. Equ. 269, 9051–9089 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Macías-Díaz, J.: Existence of solutions of an explicit energy-conserving scheme for a fractional Klein–Gordon–Zakharov system. Appl. Numer. Math. 151, 40–43 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Quispel, G., McLaren, D.: A new class of energy-preserving numerical integration methods. J. Phys. A Math. Theor. 41, 045206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Roop, J.: Variational Solution of the fractional advection dispersion equation. Ph.D. thesis, Clemson University, Clemson, SC (2004)

  30. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics, Springer, Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  31. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shi, Y., Ma, Q., Ding, X.: A new energy-preserving scheme for the fractional Klein–Gordon–Schrödinger equations. Adv. Appl. Math. Mech. 11, 1219–1247 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shi, Q., Zhang, X., Wang, C., Wang, S.: Finite time blowup for Klein–Gordon–Schrödinger system. Math. Methods Appl. Sci. 42, 3929–3941 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, B., Lange, H.: Attractors for the Klein–Gordon–Schrödinger equation. J. Math. Phys. 40, 2445–2457 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Y., Wang, B., Qin, M.: Local structure-preserving algorithms for partial differential equations. Sci. China Ser. A Math. 51, 2115–2136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, P., Huang, C.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Y., Mei, L.: A conservative spectral Galerkin method for the coupled nonlinear space-fractional Schrödinger equations. Int. J. Comput. Math. 96, 2387–2410 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, X., Ju, L.: Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315, 691–712 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou, Y.: Application of Discrete Functional Analysis to the Finite Difierence Methods. International Academic Publishers, Beijing (1990)

    Google Scholar 

  40. Zhao, X., Sun, Z., Hao, Z.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)

    Article  MATH  Google Scholar 

  41. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, Y., Shen, J.: Efficient structure preserving schemes for the Klein–Gordon–Schrödinger equations. J. Sci. Comput. 89, 47 (2021)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 12171245, 11971242) and the Research Start-up Foundation of Jiangxi Normal University (Grant No. 12021997).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Appendix: Proof of (3.11)

Proof

Utilizing the Taylor’s expansion for \(\phi \) and \(\psi \) of (3.5) at \(t=t_{n+1/2}\), we have

$$\begin{aligned} \widehat{\mathscr {R}}^{n}_2=\phi _t(\cdot ,t_{n+1/2})-\delta _t \phi ^{n+1/2}+\psi ^{n+1/2}-\psi (\cdot ,t_{n+1/2})=\mathcal {T}_1+\mathcal {T}_2, \end{aligned}$$

in which

$$\begin{aligned} \mathcal {T}_1&=\phi _t(\cdot ,t_{n+1/2})-\delta _t \phi ^{n+1/2}\\&=-\frac{\tau ^2}{16}\int _0^1 \left[ \phi _{ttt}\left( \cdot ,t_{n+1/2}+\frac{\tau }{2}s\right) +\phi _{ttt}\left( \cdot ,t_{n+1/2}-\frac{\tau }{2}s\right) \right] (1-s)^2ds \end{aligned}$$

and

$$\begin{aligned} \mathcal {T}_2&=\psi ^{n+1/2}-\psi (\cdot ,t_{n+1/2})=\frac{\tau ^2}{8}\int _0^1 \left[ \psi _{tt}\left( \cdot ,t_{n+1/2}+\frac{\tau }{2}s\right) +\psi _{tt}\left( \cdot ,t_{n+1/2}-\frac{\tau }{2}s\right) \right] (1-s)ds\\&=\frac{\tau ^2}{8}\int _0^1 \left[ \phi _{ttt}\left( \cdot ,t_{n+1/2}+\frac{\tau }{2}s\right) +\phi _{ttt}\left( \cdot ,t_{n+1/2}-\frac{\tau }{2}s\right) \right] (1-s)ds. \end{aligned}$$

Assume that \(\phi (\cdot ,t)\in C^3([0,T])\). We deduce

$$\begin{aligned} \Big | \widehat{\mathscr {R}}_2^{n} \Big |\le \mathcal {C}\tau ^2,\quad n=0,1,\ldots ,N_t-1. \end{aligned}$$

Simultaneously,

$$\begin{aligned} \delta _t \widehat{\mathscr {R}}_2^{n+1/2} =&-\frac{\tau ^2}{16}\int _0^1 \left[ \delta _t \phi _{ttt}\left( \cdot ,t_{n+1/2}+\frac{\tau }{2}s\right) + \delta _t \phi _{ttt}\left( \cdot ,t_{n+1/2}-\frac{\tau }{2}s\right) \right] (1-s)^2ds\\&+\frac{\tau ^2}{8}\int _0^1 \left[ \delta _t \phi _{ttt}\left( \cdot ,t_{n+1/2}+\frac{\tau }{2}s\right) + \delta _t \phi _{ttt}\left( \cdot ,t_{n+1/2}-\frac{\tau }{2}s\right) \right] (1-s)ds. \end{aligned}$$

Employing the Lagrange’s mean value theorem, we obtain

$$\begin{aligned}&\phi _{ttt}\left( \cdot ,t_{n+3/2}+\frac{\tau }{2}s\right) -\phi _{ttt}\left( \cdot ,t_{n+1/2}+\frac{\tau }{2}s\right) =\tau \phi ^{(4)}(\cdot ,\xi _1),\\&\quad t_{n+1/2}+\frac{\tau }{2}s<\xi _1<t_{n+3/2}+\frac{\tau }{2}s, \end{aligned}$$

and

$$\begin{aligned}&\phi _{ttt}\left( \cdot ,t_{n+3/2}-\frac{\tau }{2}s\right) -\phi _{ttt} \left( \cdot ,t_{n+1/2}-\frac{\tau }{2}s\right) \\&\quad =\tau \phi ^{(4)}(\cdot ,\xi _2),\quad t_{n+1/2}-\frac{\tau }{2}s<\xi _2<t_{n+3/2}-\frac{\tau }{2}s. \end{aligned}$$

Suppose that \(\phi (\cdot ,t)\in C^4([0,T])\). We get

$$\begin{aligned} \Big | \delta _t \widehat{\mathscr {R}}_2^{n+1/2} \Big |\le \mathcal {C}\tau ^2,\quad n=0,1,\ldots ,N_t-1. \end{aligned}$$

This completes the proof of (3.11). \(\square \)

B Appendix: Proof of Theorem 3.3

The proof of Theorem 3.3 is divided into two parts, including the existence and uniqueness.

(I) Existence:

Proof

It is worth noting that \(U_N^{n+1}=2U_N^{n+1/2}-U_N^{n}\) and \(\delta _t\Phi _N^{n+1/2}=\Psi _N^{n+1/2}\). We reformulate the spectral Galerkin scheme (3.12)–(3.14) into the following form

$$\begin{aligned}&\left( U_N^{n+1/2}-U_N^{n},w_N\right) +\frac{\lambda \tau }{4}\text {i}\mathcal {B}\left( U_N^{n+1/2},w_N\right) -\frac{\kappa _1\tau }{2}\text {i} \left( U_N^{n+1/2}\Phi _N^{n+1/2},w_N\right) \nonumber \\&\qquad -\frac{\kappa _2\tau }{2} \text {i}\Big (\left( |2U_N^{n+1/2}-U_N^{n}|^2+|U_N^{n}|^2\right) U_N^{n+1/2}\Phi _N^{n+1/2},w_N\Big )=0, \end{aligned}$$
(B.1)
$$\begin{aligned}&\left( 2\Phi _N^{n+1/2}-2\Phi _N^{n} -\tau \Psi _N^{n},w_N\right) +\frac{\gamma \tau ^2}{2}\mathcal {B}\left( \Phi _N^{n+1/2},w_N\right) +\frac{\eta ^2\tau ^2}{2} \left( \Phi _N^{n+1/2},w_N\right) \nonumber \\&\qquad -\frac{\kappa _1\tau ^2}{4} \Big (\left( |2U_N^{n+1/2}-U_N^{n}|^2+|U_N^{n}|^2\right) ,w_N\Big )-\frac{\kappa _2\tau ^2}{4} \Big (\left( |2U_N^{n+1/2}-U_N^{n}|^4+|U_N^{n}|^4\right) ,w_N\Big )=0. \end{aligned}$$
(B.2)

Now, we carry out proving the existence of \(U_N^{n+1/2}\) and \(\Phi _N^{n+1/2}\). For convenience, we define the map \({\textbf {s}}=(s_1,s_2)\), \(\mathscr {F}=(\mathscr {F}_1,\mathscr {F}_2):\) \((X_N^0(\Omega ),X_N^0(\Omega ))\rightarrow (X_N^0(\Omega ),X_N^0(\Omega ))\), such that

$$\begin{aligned} \left( \mathscr {F}_1({\textbf {s}}),w_N\right) =&(s_1-U_N^n,w_N)+\frac{\lambda \tau }{4}\text {i}\mathcal {B}( s_1,w_N )-\frac{\kappa _1\tau }{2}\text {i}(s_1s_2,w_N)\nonumber \\&-\frac{\kappa _2\tau }{2}\text {i}\Big ( \left( |2s_1-U_N^n|^2+|U_N^n|^2 \right) s_1s_2,w_N\Big ),\quad \forall w_N\in X_N^0(\Omega ) \end{aligned}$$
(B.3)

and

$$\begin{aligned} (\mathscr {F}_2({\textbf {s}}),w_N)=\,&(2s_2-2\Phi _N^{n}-\tau \Psi _N^{n},w_N)+\frac{\gamma \tau ^2}{2}\mathcal {B}( s_2,w_N )+\frac{\eta ^2\tau ^2}{2}( s_2,w_N)\nonumber \\&-\frac{\kappa _1\tau ^2}{4} \Big (|2s_1-U_N^n|^2+|U_N^{n}|^2,w_N \Big )\nonumber \\&-\frac{\kappa _2\tau ^2}{4} \Big (|2s_1-U_N^n|^4+|U_N^{n}|^4,w_N \Big ),\quad \forall w_N\in X_N^0(\Omega ). \end{aligned}$$
(B.4)

Choosing \(w_N=s_1\) in (B.3) and taking the real part, from the Young’s inequality, we derive

$$\begin{aligned} \text {Re}(\mathscr {F}_1({\textbf {s}}),s_1)&=\text {Re}(s_1-U_N^n,s_1)\}=\Vert s_1\Vert ^2-\text {Re}( U_N^n,s_1 )\ge \frac{1}{2}\Vert s_1\Vert ^2-\frac{1}{2} \Vert U_N^n\Vert ^2\\&\ge \frac{1}{2}\Vert s_1\Vert ^2-\mathcal {C}. \end{aligned}$$

Setting \(w_N=s_2\) in (B.4), by utilizing the Cauchy–Schwarz inequality, we obtain

$$\begin{aligned} (\mathscr {F}_2({\textbf {s}}),s_2)&\ge (2s_2-2\Phi _N^{n}-\tau \Psi _N^{n},s_2)-\frac{\kappa _1\tau ^2}{4} \Big (|2s_1-U_N^n|^2+|U_N^{n}|^2,s_2 \Big )\nonumber \\&\qquad -\frac{\kappa _2\tau ^2}{4} \Big (|2s_1-U_N^n|^4+|U_N^{n}|^4,s_2 \Big )\nonumber \\&=2\Big \Vert s_2\Big \Vert ^2-(2\Phi _N^{n}+\tau \Psi _N^{n},s_2)-\frac{\kappa _1\tau ^2}{4} \Big (|2s_1-U_N^n|^2+|U_N^{n}|^2,s_2 \Big )\nonumber \\&\qquad -\frac{\kappa _2\tau ^2}{4} \Big (|2s_1-U_N^n|^4+|U_N^{n}|^4,s_2 \Big ). \end{aligned}$$
(B.5)

By employing the boundness of the numerical solutions (see Theorem 3.2) and the Young’s inequality, for sufficient small \(\tau \), we conclude

$$\begin{aligned}&\left( 2\Phi _N^{n}+\tau \Psi _N^{n},s_2\right) \le \Big \Vert 2\Phi _N^{n}+\tau \Psi _N^{n} \Big \Vert \Big \Vert s_2 \Big \Vert \le \frac{1}{2}\Big \Vert 2\Phi _N^{n}+\tau \Psi _N^{n} \Big \Vert ^2 +\frac{1}{2} \Big \Vert s_2 \Big \Vert ^2, \end{aligned}$$
(B.6)
$$\begin{aligned}&\frac{\kappa _1\tau ^2}{4}\Big (|2s_1-U_N^n|^2+|U_N^{n}|^2,s_2 \Big )\le \frac{\kappa _1^2\tau ^4}{32} \Big \Vert |2s_1-U_N^n|^2+|U_N^{n}|^2 \Big \Vert ^2 + \frac{1}{2} \Big \Vert s_2 \Big \Vert ^2\le \mathcal {C}+\frac{1}{2} \Big \Vert s_2 \Big \Vert ^2 \end{aligned}$$
(B.7)

and

$$\begin{aligned} \frac{\kappa _2\tau ^2}{2}\Big (|2s_1-U_N^n|^4+|U_N^{n}|^4,s_2 \Big )\le \mathcal {C}+\frac{1}{2} \Big \Vert s_2 \Big \Vert ^2. \end{aligned}$$
(B.8)

Substituting (B.6)–(B.8) into (B.5), we arrive at

$$\begin{aligned} (\mathscr {F}_2({\textbf {s}}),s_2)\ge \frac{1}{2} \Big \Vert s_2 \Big \Vert ^2-\frac{1}{2}\Big \Vert 2\Phi _N^{n}+\tau \Psi _N^{n} \Big \Vert ^2-\mathcal {C}. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \text {Re} (\mathscr {F}({\textbf {s}}),s_1)&=\text {Re} (\mathscr {F}_1({\textbf {s}}),s_2)+\text {Re} (\mathscr {F}_2({\textbf {s}}),s)\\&\ge \frac{1}{2} \Big \Vert {\textbf {s}} \Big \Vert ^2-\frac{1}{2}\Big \Vert 2\Phi _N^{n}+\tau \Psi _N^{n} \Big \Vert ^2-\mathcal {C} =\frac{1}{2}\Big ( \Big \Vert {\textbf {s}} \Big \Vert ^2 - \Big \Vert \Big ( 2\Phi _N^{n}+\tau \Psi _N^{n}, \sqrt{2\mathcal {C}}\Big ) \Big \Vert ^2 \Big ). \end{aligned}$$

Taking \(\delta =\Big \Vert \Big ( 2\Phi _N^{n}+\tau \Psi _N^{n}, \sqrt{2\mathcal {C}}\Big ) \Big \Vert \), which satisfies the condition of Lemma 3.5, we derive

$$\begin{aligned} \text {Re}( \mathscr {F}({\textbf {s}}),{\textbf {s}}) \ge 0,\quad \forall {\textbf {s}}:~~\Vert {\textbf {s}}\Vert =\delta . \end{aligned}$$

This proves the existence of the numerical solution of (3.12)–(3.14). \(\square \)

Next, we prove the uniqueness of the numerical solution.

(II) Uniqueness:

Proof

We prove the theorem by introduction. It is obvious to find from (3.15) that the numerical solution \((U_N^0,\Phi ^0_N,\Psi _N^0)\in (X_N^0(\Omega ),X_N^0(\Omega ),X_N^0(\Omega ))\) exists and is unique. Assume that \((U_N^n,\Phi ^n_N,\Psi _N^n)\) is the unique solution of (3.12)–(3.14) for \(n=0,1,\ldots ,N_t-1\). Next, we prove the uniqueness of the solution \((U_N^{n+1/2},\Phi ^{n+1/2}_N)\). Assume there are two solutions \(X^{n+1/2}=(X_1^{n+1/2},X_2^{n+1/2})\) and \(Y^{n+1/2}=(Y_1^{n+1/2},Y_2^{n+1/2})\) for scheme (3.12)–(3.14). Then \(X_1^{n+1/2}-Y_1^{n+1/2}\) and \(X_2^{n+1/2}-Y_2^{n+1/2}\) satisfy (B.3) and (B.4) as follows

$$\begin{aligned} \big (\mathscr {F}_1\big ({X}^{n+1/2}\big )-\mathscr {F}_1\big ({Y}^{n+1/2}\big ),X_1^{n+1/2}-Y_1^{n+1/2}\big )&=0,\\ \big (\mathscr {F}_2\big ({X}^{n+1/2}\big )-\mathscr {F}_2\big ({Y}^{n+1/2}\big ),X_2^{n+1/2}-Y_2^{n+1/2}\big )&=0. \end{aligned}$$

By the definition of \(\mathscr {F}_1\), we have

$$\begin{aligned}&\Big \Vert X_1^{n+1/2}-Y_1^{n+1/2} \Big \Vert ^2+\frac{\lambda \tau }{4} \text {i}\mathcal {B}\big (X_1^{n+1/2}-Y_1^{n+1/2},X_1^{n+1/2}-Y_1^{n+1/2}\big )\nonumber \\&\quad -\frac{\kappa _1\tau }{2}\text {i}\big (X_1^{n+1/2}X_2^{n+1/2} -Y_1^{n+1/2}Y_2^{n+1/2},X_1^{n+1/2}-Y_1^{n+1/2}\big )\nonumber \\&\quad -\frac{\kappa _2\tau }{2}\text {i}\Big ( \big ( |2X_1^{n+1/2}-U_N^n|^2+|U_N^n|^2 \big )X_1^{n+1/2}X_2^{n+1/2}\nonumber \\&\quad -\big ( |2Y_1^{n+1/2}-U_N^n|^2+|U_N^n|^2 \big )Y_1^{n+1/2}Y_2^{n+1/2},X_1^{n+1/2}-Y_1^{n+1/2}\Big )=0. \end{aligned}$$
(B.9)

Taking the real part of (B.9), by admitting the boundness of the numerical solutions (see Theorem 3.2), Lemma 3.4 and the Cauchy–Schwarz inequality, we obtain

$$\begin{aligned} \Big \Vert X_1^{n+1/2}-Y_1^{n+1/2} \Big \Vert ^2&=-\frac{\kappa _1\tau }{2}\text {Im}\big (X_1^{n+1/2}X_2^{n+1/2}-Y_1^{n+1/2}Y_2^{n+1/2},X_1^{n+1/2}-Y_1^{n+1/2}\big )\nonumber \\&\quad +\frac{\kappa _2\tau }{2}\text {Im}\Big ( \big ( |2X_1^{n+1/2}-U_N^n|^2+|U_N^n|^2 \big )X_1^{n+1/2}X_2^{n+1/2}\nonumber \\&\quad -\big ( |2Y_1^{n+1/2}-U_N^n|^2+|U_N^n|^2 \big )Y_1^{n+1/2}Y_2^{n+1/2},X_1^{n+1/2}-Y_1^{n+1/2}\Big )\nonumber \\&\le \mathcal {C}\tau \Big (\Big \Vert X_1^{n+1/2}-Y_1^{n+1/2} \Big \Vert ^2+\Big \Vert X_1^{n+1/2}-Y_1^{n+1/2} \Big \Vert ^2 \Big ). \end{aligned}$$
(B.10)

Taking into account of the definition of \(\mathscr {F}_2\), we get

$$\begin{aligned}&\Big \Vert X_2^{n+1/2}-Y_2^{n+1/2} \Big \Vert ^2+\frac{\gamma \tau ^2}{4}\mathcal {B}\big (X_2^{n+1/2}-Y_2^{n+1/2},X_2^{n+1/2}-Y_2^{n+1/2}\big )\\&\quad +\frac{\eta ^2\tau ^2}{4} \big (X_2^{n+1/2}-Y_2^{n+1/2},X_2^{n+1/2}-Y_2^{n+1/2}\big )\\&\quad -\frac{\kappa _1\tau ^2}{8} \Big (\big (|2X_2^{n+1/2}-U_N^{n}|^2\big )-\big (|2Y_2^{n+1/2}-U_N^{n}|^2\big ),X_2^{n+1/2}-Y_2^{n+1/2}\Big )\\&\quad -\frac{\kappa _2\tau ^2}{8} \Big (\big (|2X_2^{n+1/2}-U_N^{n}|^4\big )-\big (|2Y_2^{n+1/2}-U_N^{n}|^4\big ),X_2^{n+1/2}-Y_2^{n+1/2}\Big )=0. \end{aligned}$$

By employing Theorem 3.2, Lemma 3.4 and the Cauchy–Schwarz inequality, we deduce

$$\begin{aligned} \Big \Vert X_2^{n+1/2}-Y_2^{n+1/2} \Big \Vert ^2&\le \Big \Vert X_2^{n+1/2}-Y_2^{n+1/2} \Big \Vert ^2\nonumber \\&\quad +\frac{\gamma \tau ^2}{4}\Big |X_2^{n+1/2}-Y_2^{n+1/2}\Big |^2_{\alpha /2}+\frac{\eta ^2\tau ^2}{4} \Big \Vert X_2^{n+1/2}-Y_2^{n+1/2}\Big \Vert ^2\nonumber \\&=\frac{\kappa _1\tau ^2}{8} \Big (\big (|2X_2^{n+1/2}-U_N^{n}|^2\big )-\big (|2Y_2^{n+1/2}-U_N^{n}|^2\big ),X_2^{n+1/2}-Y_2^{n+1/2}\Big )\nonumber \\&\quad +\frac{\kappa _2\tau ^2}{8} \Big (\big (|2X_2^{n+1/2}-U_N^{n}|^4\big )-\big (|2Y_2^{n+1/2}-U_N^{n}|^4\big ),X_2^{n+1/2}-Y_2^{n+1/2}\Big )\nonumber \\&\le \mathcal {C}\tau ^2 \Big \Vert X_2^{n+1/2}-Y_2^{n+1/2} \Big \Vert ^2. \end{aligned}$$
(B.11)

Summing up (B.10) and (B.11), for a sufficient small \(\tau \), we arrive at

$$\begin{aligned} \Big \Vert X^{n+1/2}-Y^{n+1/2} \Big \Vert ^2&=\Big \Vert X_1^{n+1/2}-Y_1^{n+1/2} \Big \Vert ^2+\Big \Vert X_2^{n+1/2}-Y_2^{n+1/2} \Big \Vert ^2\\&\le \mathcal {C}\tau \Big \Vert X_1^{n+1/2}-Y_1^{n+1/2} \Big \Vert ^2+\mathcal {C}\tau \Big \Vert X_2^{n+1/2}-Y_2^{n+1/2} \Big \Vert ^2\\&\quad +\mathcal {C}\tau ^2 \Big \Vert X_2^{n+1/2}-Y_2^{n+1/2} \Big \Vert ^2\\&\le \mathcal {C}\tau \Big \Vert X_1^{n+1/2}-Y_1^{n+1/2} \Big \Vert ^2+\mathcal {C}\tau \Big \Vert X_2^{n+1/2}-Y_2^{n+1/2} \Big \Vert ^2\\&= \mathcal {C}\tau \Big \Vert X^{n+1/2}-Y^{n+1/2} \Big \Vert ^2. \end{aligned}$$

By assuming \(\mathcal {C}\tau <1\), it leads to \(\Big \Vert X^{n+1/2}-Y^{n+1/2} \Big \Vert =0\), which implies \(X_1^{n+1/2}=Y_1^{n+1/2}\) and \(X_2^{n+1/2}=Y_2^{n+1/2}\). This ends the proof of the uniqueness. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Fu, Y., Cai, W. et al. Unconditional Convergence of Conservative Spectral Galerkin Methods for the Coupled Fractional Nonlinear Klein–Gordon–Schrödinger Equations. J Sci Comput 94, 70 (2023). https://doi.org/10.1007/s10915-023-02108-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02108-6

Keywords

Mathematics Subject Classification

Navigation