Skip to main content
Log in

Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the numerical solutions of the coupled fractional Klein-Gordon-Schrödinger equation. The numerical schemes are constructed by combining the Crank-Nicolson/leap-frog difference methods for the temporal discretization and the Galerkin finite element methods for the spatial discretization. We give a detailed analysis of the conservation properties in the senses of discrete mass and energy. Then the numerical solutions are shown to be unconditionally bounded in L2 −norm, \(H^{\frac {\alpha }{2}}-\)semi-norm and \(L^{\infty }-\)norm, respectively. Based on the well-known Brouwer fixed-point theorem and the mathematical induction, the unique solvability of the discrete solutions is proved. Moreover, the schemes are proved to be unconditionally convergent with the optimal order \(O\left (\tau ^{2}+h^{r+1}\right )\), where τ is the temporal step, h is the spatial grid size, and r is the order of the selected finite element space. Furthermore, by using the proposed decoupling and iterative algorithms, several numerical examples are included to support theoretical results and show the effectiveness of the schemes. Finally, the fast Krylov subspace solver with suitable circulant preconditioner is designed to effectively solve the Toeplitz-like linear systems. In each iterative step, this method can effectively reduce the memory requirement of above each finite element scheme from \({{O}\left (M^{2}\right )}\) to O(M), and the computational complexity from \({O\left (M^{3}\right )}\) to \({O(M \log M)}\), where M is the number of grid nodes. Numerical tests are carried out to show that this fast algorithm is more practical than the traditional backslash and LU factorization/Cholesky decomposition methods, in terms of memory requirement and computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In fact, it finds that the preconditioned PGPBiCOR and PCG method indeed converges to the default stopping criterion 1e-12 in 5 iteration steps.

References

  1. Banquet, C., Ferreira, L.C., Villamizar-Roa, E.J.: On existence and scattering theory for the Klein–Gordon–Schrodinger̈ system in an infinite L2-norm setting. Ann. Mat. Pura Appl. 194(3), 781–804 (2015)

    MATH  MathSciNet  Google Scholar 

  2. Shi, Q.-H., Li, W.-T., Wang, S.: Wellposedness in energy space for the nonlinear Klein–Gordon–Schrodinger̈ system. Appl. Math. Comput. 251, 55–64 (2015)

    MATH  MathSciNet  Google Scholar 

  3. Guo, B.: Global solution for some problem of a class of equations in interaction of complex Schrodinger̈ field and real Klein-Gordon field. Sci. China Ser. A 25, 97–107 (1982)

    Google Scholar 

  4. Zhang, L.: Convergence of a conservative difference scheme for a class of Klein–Gordon–Schrodinger̈ equations in one space dimension. Appl. Math. Comput. 163(1), 343–355 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Bao, W., Yang, L.: Efficient and accurate numerical methods for the Klein–Gordon–Schrodinger̈ equations. J. Comput. Phys. 225(2), 1863–1893 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Wang, T.: Optimal point-wise error estimate of a compact difference scheme for the Klein–Gordon–Schrodinger̈ equation. J. Math. Anal. Appl. 412(1), 155–167 (2014)

    MATH  MathSciNet  Google Scholar 

  7. Wang, S., Zhang, L.: A class of conservative orthogonal spline collocation schemes for solving coupled Klein–Gordon–Schrodinger̈ equations. Appl. Math. Comput. 203 (2), 799–812 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Hong, J., Jiang, S., Kong, L., Li, C.: Numerical comparison of five difference schemes for coupled Klein–Gordon–Schrodinger̈ equations in quantum physics. J. Phys. A Math. Theor. 40(30), 9125 (2007)

    MATH  MathSciNet  Google Scholar 

  9. Li, M., Shi, D., Wang, J., Ming, W.: Unconditional superconvergence analysis of the conservative linearized Galerkin FEMs for nonlinear Klein-Gordon-Schrodinger̈ equation. Appl. Numer. Math. 142, 47–63 (2019)

    MATH  MathSciNet  Google Scholar 

  10. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62(3), 3135 (2000)

    MATH  MathSciNet  Google Scholar 

  11. Ran, M., Zhang, C.: A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations. Commun. Nonlinear Sci. Numer. Simulat. 41, 64–83 (2016)

    Google Scholar 

  12. Tarasov, V.E., Zaslavsky, G.M.: Fractional Ginzburg–Landau equation for fractal media. Phys. A 354, 249–261 (2005)

    Google Scholar 

  13. Guo, B., Huo, Z.: Well-posedness for the nonlinear fractional Schrodinger̈ equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation. Fract. Calc. Appl. Anal. 16(1), 226–242 (2013)

    MATH  MathSciNet  Google Scholar 

  14. Li, M., Huang, C.: An efficient difference scheme for the coupled nonlinear fractional Ginzburg–Landau equations with the fractional Laplacian. Numer. Meth. Part. Differ. Equ. 35(1), 394–421 (2019)

    MATH  MathSciNet  Google Scholar 

  15. Cheng, X., Duan, J., Li, D.: A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equations. Appl. Math. Comput. 346, 452–464 (2019)

    MATH  MathSciNet  Google Scholar 

  16. Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80(1), 403–419 (2019)

    MATH  MathSciNet  Google Scholar 

  17. Cao, J., Song, G., Wang, J., Shi, Q., Sun, S.: Blow-up and global solutions for a class of time fractional nonlinear reaction–diffusion equation with weakly spatial source. Appl. Math. Lett. 91, 201–206 (2019)

    MATH  MathSciNet  Google Scholar 

  18. Huang, C., Guo, B., Huang, D., Li, Q.: Global well-posedness of the fractional Klein-Gordon-Schrodinger̈ system with rough initial data. Sci. China Math. 59(7), 1345–1366 (2016)

    MATH  MathSciNet  Google Scholar 

  19. Alqahtani, R.T.: Approximate solution of non-linear fractional Klein-Gordon equation using spectral collocation method. Appl. Math. Comput. 6(13), 2175 (2015)

    Google Scholar 

  20. Khader, M.M.: An efficient approximate method for solving linear fractional Klein–Gordon equation based on the generalized Laguerre polynomials. Int. J. Comput. Math. 90(9), 1853–1864 (2013)

    MATH  MathSciNet  Google Scholar 

  21. Wang, Z., Vong, S.: A compact difference scheme for a two dimensional nonlinear fractional Klein–Gordon equation in polar coordinates. Comput. Math. Appl. 71(12), 2524–2540 (2016)

    MathSciNet  Google Scholar 

  22. Wang, J., Aiguo, X.: An efficient conservative difference scheme for fractional Klein-Gordon-Schrodinger̈ equations. Appl. Math. Comput. 320, 691–709 (2018)

    MathSciNet  Google Scholar 

  23. Li, D., Liao, H.-L., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)

    MathSciNet  Google Scholar 

  24. Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62 (3), 855–875 (2011)

    MATH  MathSciNet  Google Scholar 

  25. Li, M., Huang, C., Wang, P.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algor. 74(2), 499–525 (2017)

    MATH  Google Scholar 

  26. Li, M., Huang, C., Wang, N.: Galerkin finite element method for nonlinear fractional Ginzburg-Landau equation. Appl. Numer. Math. 118, 131–?149 (2017)

    MATH  MathSciNet  Google Scholar 

  27. Secchi, S.: Ground state solutions for nonlinear fractional Schrodinger̈ equations in RN. J. Math. Phys. 54(3), 031501 (2013)

    MATH  MathSciNet  Google Scholar 

  28. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32(6), 1839–1875 (1995)

    MATH  MathSciNet  Google Scholar 

  29. Wang, P., Huang, C.: A conservative linearized difference scheme for the nonlinear fractional Schrodinger̈ equation. Numer. Algor. 69, 625–641 (2015)

    MATH  MathSciNet  Google Scholar 

  30. Li, M., Zhao, Y.-L.: A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator. Appl. Math. Comput. 338, 758–773 (2018)

    MATH  MathSciNet  Google Scholar 

  31. Ran, M., Zhang, C.: A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrodinger̈ equations. Commun. Nonlinear Sci. Numer. Simulat. 41, 64–83 (2016)

    MathSciNet  Google Scholar 

  32. Li, M., Gu, X.-M., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358(1), 256–282 (2018)

    MATH  MathSciNet  Google Scholar 

  33. Gu, X.-M., Huang, T.-Z., Ji, C.-C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection–diffusion equation. J. Sci. Comput. 2017, 957–985 (2017)

    MATH  MathSciNet  Google Scholar 

  34. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Part. Differ. Equ. 22, 558–576 (2006)

    MATH  MathSciNet  Google Scholar 

  35. Roop, J.P.: Variational solution of the fractional advection dispersion equation, Ph.D. thesis. Clemson University, South Carolina (2004)

    Google Scholar 

  36. Zhang, H., Liu, F., Anh, V.: Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl. Math. Comput. 217, 2534–2545 (2010)

    MATH  MathSciNet  Google Scholar 

  37. Bu, W., Liu, X., Tang, Y., Yang, J.: Finite element multigrid method for multi-term time fractional advection diffusion equations. Int. J. Mod. Sim. Sci. Comp. 6, 1540001 (2015)

    Google Scholar 

  38. Bu, W., Tang, Y., Wu, Y., Yang, J.: Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations. J. Comput. Phys. 293, 264–279 (2015)

    MATH  MathSciNet  Google Scholar 

  39. Akrivis, G.D.: Finite difference discretization of the cubic Schrodinger̈ equation. IMA J. Numer. Anal. 13(1), 115–124 (1993)

    MATH  MathSciNet  Google Scholar 

  40. Sun, Z.-z., Zhao, D.-d.: On the \(l^{\infty }\) convergence of a difference scheme for coupled nonlinear Schrödinger equations. Comput. Math. Appl. 59(10), 3286–3300 (2010)

    MATH  MathSciNet  Google Scholar 

  41. Zhou, Y.: Applications of discrete functional analysis to the finite difference method Beijing: International Academic Publishers (1991)

  42. Xia, J., Wang, M.: The exact solitary solution of coupled Klein-Gordon-Schrodinger̈ equations. Appl. Math. Mech. 23, 52–57 (2002)

    Google Scholar 

  43. Wang, P., Huang, C.: An energy conservative difference scheme for the nonlinear fractional Schrodinger̈ equations. J. Comput. Phys. 293, 238–251 (2015)

    MATH  MathSciNet  Google Scholar 

  44. Wang, D., Xiao, A., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrodinger̈ equations. J. Comput. Phys. 272, 644–655 (2014)

    MATH  MathSciNet  Google Scholar 

  45. Rodman, L., Shalom, T.: On inversion of symmetric Toeplitz matrices. SIAM J. Matrix Anal. Appl. 13(2), 530–549 (1992)

    MATH  MathSciNet  Google Scholar 

  46. Gu, X.-M., Clemens, M., Huang, T.-Z., Li, L.: The SCBiCG class of algorithms for complex symmetric linear systems with applications in several electromagnetic model problems. Comput. Phys. Commun. 191, 52–64 (2015)

    MATH  Google Scholar 

  47. Gu, X.M., Huang, T.Z., Carpentieri, B., Li, L., Wen, C.: A hybridized iterative algorithm of the BiCORSTAB and GPBiCOR methods for solving non-Hermitian linear systems. Comput. Math. Appl. 70(12), 3019–3031 (2015)

    MathSciNet  Google Scholar 

  48. Chan, R.H.-F., Jin, X.-Q.: An introduction to iterative Toeplitz solvers. SIAM, Philadelphia (2007)

    MATH  Google Scholar 

Download references

Funding

This work was supported by the NSF of China (Nos. 11271340, 11771163, 11801527), China Postdoctoral Science Foundation (No. 2018M632791), Key Scientific Research Projects of Higher Eduction of Henan (No. 19A110034), and NSF of Anhui Higher Education Institutions of China (No. KJ2017A704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengming Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 4.4

Appendix: Proof of Theorem 4.4

Let us prove this theorem step by step.

  1. (I)

    For the unique existence of Φ1, let us consider the homogeneous system of (3.7), i.e.,

    $$ \frac{2}{\tau^{2}}({\Phi}^{1}, \omega_{h}) + \gamma \mathcal{B}({\Phi}^{1}, \omega_{h}) +\eta^{2}({\Phi}^{1}, \omega_{h}) = 0, \quad \forall\omega_{h}\in {S_{h}^{r}}. $$
    (A.1)

    Substituting \(\omega _{h}={\Phi }^{1}\) in (A.1) results in the following:

    $$ \left( 1+\frac{\eta^{2}\tau^{2}}{2}\right)\|{\Phi}^{1}\|^{2}+\gamma|{\Phi}^{1}|^{2}_{\frac{\alpha}{2}}=0. $$
    (A.2)

    Hence, one obtains Φ1 = 0, which shows (3.7) is uniquely solvable.

  2. (II)

    To prove the existence of the discrete system (3.5), the Brouwder fixed-point theorem is adopted. Rewrite (3.5) into its equivalent form as follows:

    $$ \begin{array}{@{}rcl@{}} i(\widehat{U}^{n+\frac{1}{2}}, v_{h})-\frac{\lambda\tau}{4}\mathcal{B}(\widehat{U}^{n+\frac{1}{2}}, v_{h}) +\frac{\tau}{2}\left( \left[\kappa_{1}+\kappa_{2}\left( |2\widehat{U}^{n+\frac{1}{2}}-U^{n}|^{2}+|U^{n}|^{2}\right)\right]\right.\\ \left. \times \widehat{U}^{n+\frac{1}{2}}\widehat{\Phi}^{n+\frac{1}{2}} , v_{h}\right)-i(U^{n},v_{h})=0. \end{array} $$
    (A.3)

    Denote \(\varPsi : {S_{h}^{r}}\rightarrow {S_{h}^{r}}\) as follows:

    $$ \begin{array}{@{}rcl@{}} &&({\varPsi}(\varpi), v_{h}) := \frac{\lambda}{4}\mathcal{B}(\varpi, v_{h})-\frac{1}{2}\left( \left[\kappa_{1}+\kappa_{2}\left( |2\varpi-U^{n}|^{2}+|U^{n}|^{2}\right)\right]\varpi\widehat{\Phi}^{n+\frac{1}{2}} , v_{h}\right),\\ &&\varpi\in {S_{h}^{r}}. \end{array} $$
    (A.4)

    It is obvious that in order to prove the existence of (3.5), we only need to prove the existence of the following one as follows:

    $$ \widehat{U}^{n+\frac{1}{2}} = U^{n}-i\tau {\varPsi}\left( \widehat{U}^{n+\frac{1}{2}}\right). $$
    (A.5)

    To this end, let us denote \(\mathcal {F}: {S_{h}^{r}}\rightarrow {S_{h}^{r}}\) as follows:

    $$ \mathcal{F}(\varpi):= \varpi-U^{n}+i\tau {\varPsi}(\varpi). $$
    (A.6)

From Lemma 4.4, one intends to conclude \(Re(\mathcal {F}(\varpi ), \varpi )\geq 0\). Indeed, as the result of the following:

$$Im({\varPsi}(\varpi), \varpi) = 0, $$

we have the following:

$$ \begin{array}{@{}rcl@{}} Re(\mathcal{F}(\varpi), \varpi) &=& \|\varpi\|^{2}-Re(U^{n}, \varpi) \\ &\geq& \|\varpi\|^{2} - \|U^{n}\|\cdot \|\varpi\| \\ &=& \|\varpi\|(\|\varpi\|-\|U^{n}\|). \end{array} $$
(A.7)

If we set ∥ϖ∥ = ∥Un∥ in (A.7), which is a constant by Theorem 4.1, then it follows from (A.7):

$$ Re(\mathcal{F}(\varpi), \varpi)\geq 0. $$
(A.8)

Accordingly, we complete the proof of the existence of the solution to (3.5).

Next, we prove the uniqueness of the solution Un, 0 ≤ nN. Assume there are two solutions \(X^{n+1}, Y^{n+1}\in {S_{h}^{r}}\) to solve the discrete scheme (3.5). Then, by (A.5), one has the following:

$$ \|\widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\|^{2} = -i\tau \left( {\varPsi}\left( \widehat{X}^{n+\frac{1}{2}}\right) -{\varPsi}\left( \widehat{Y}^{n+\frac{1}{2}}\right), \widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\right). $$
(A.9)

From (3.5)–(3.7), we notice that when one intends to find the solution Un+ 1, the solutions Un and Φn+ 1 have been solved. Then, taking the real part of (A.9), we obtain the following:

$$ \begin{array}{@{}rcl@{}} &&\|\widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\|^{2}\\&=& \tau \text{Im}\left\{\frac{1}{2}\left( \left[\kappa_{1}+\kappa_{2}\left( |2\widehat{X}^{n+\frac{1}{2}}-U^{n}|^{2}+|U^{n}|^{2}\right)\right]\widehat{X}^{n+\frac{1}{2}}\widehat{\Phi}^{n+\frac{1}{2}} , \widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\right)\right\} \\ && - \tau \text{Im}\left\{\frac{1}{2}\left( \left[\kappa_{1}+\kappa_{2}\left( |2\widehat{Y}^{n+\frac{1}{2}} - U^{n}|^{2}+|U^{n}|^{2}\right)\right]\widehat{Y}^{n+\frac{1}{2}}\widehat{\Phi}^{n+\frac{1}{2}} , \widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\right)\right\} \\ &=&\frac{\kappa_{1}\tau}{2}\text{Im}\left( (\widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}})\widehat{\Phi}^{n+\frac{1}{2}}, \widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\right)\\&&+\frac{\kappa_{2}\tau}{2}\text{Im}\left( \mathcal{G}^{n}\widehat{\Phi}^{n+\frac{1}{2}}, \widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\right), \\ && \end{array} $$
(A.10)

where

$$ \mathcal{G}^{n}:=\left( |2\widehat{X}^{n+\frac{1}{2}}-U^{n}|^{2}+ |U^{n}|^{2}\right)\widehat{X}^{n+\frac{1}{2}}-\left( |2\widehat{Y}^{n+\frac{1}{2}}-U^{n}|^{2}+|U^{n}|^{2}\right)\widehat{Y}^{n+\frac{1}{2}}. $$

From (4.16), the first term on the RHS of (A.10) can be bounded as follows:

$$ \left| \frac{\kappa_{1}\tau}{2}\text{Im}\left( \left( \widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\right)\widehat{\Phi}^{n+\frac{1}{2}}, \widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\right)\right|\leq \frac{\kappa_{1}C_{M_{4}}\tau}{2}\|\widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}})\|^{2}. $$
(A.11)

Meanwhile, by Lemma 4.5, the second term on the RHS of (A.10) can be bounded as follows:

$$ \begin{array}{@{}rcl@{}} && \left|\frac{\kappa_{2}\tau}{2}\text{Im}\left( \mathcal{G}^{n}\widehat{\Phi}^{n+\frac{1}{2}}, \widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\right)\right| \\ & \leq& \left|\frac{\kappa_{2}\tau}{2}\text{Im}\left( |U^{n}|^{2}(\widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}})\widehat{\Phi}^{n+\frac{1}{2}}, \widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\right) \right|\\&&+\left|\frac{\kappa_{2}\tau}{2}\text{Im}\left( \left[|2\widehat{X}^{n+\frac{1}{2}}-U^{n}|^{2}\widehat{X}^{n+\frac{1}{2}} -|2\widehat{Y}^{n+\frac{1}{2}}-U^{n}|^{2}\widehat{Y}^{n+\frac{1}{2}}\right]\widehat{\Phi}^{n+\frac{1}{2}}, \widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\right) \right| \\ &\leq& \frac{\kappa_{2}C_{M_{3}}^{2}C_{M_{4}}\tau}{2}\|\widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\|^{2} \\&&+\frac{5\kappa_{2}C_{M_{4}}\tau}{2}\left( \max\left\{|2\widehat{X}^{n+\frac{1}{2}}-U^{n}|, |2\widehat{Y}^{n+\frac{1}{2}}-U^{n}|, |\widehat{X}^{n+\frac{1}{2}}|, |\widehat{Y}^{n+\frac{1}{2}}|\right\}\right)^{2}\|\widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\|^{2}\\ &\leq& 23\kappa_{2}C_{M_{3}}^{2}C_{M_{4}}\tau\|\widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\|^{2}. \end{array} $$
(A.12)

Then, substituting (A.11) and (A.12) into (A.10) gives the following:

$$ \begin{array}{@{}rcl@{}} \|\widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\|^{2}&\leq& \left( \frac{\kappa_{1}C_{M_{4}}}{2}+ 23\kappa_{2}C_{M_{3}}^{2}C_{M_{4}}\right)\tau \|\widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\|^{2}\\&:=&C_{1}\tau\|\widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}\|^{2}. \end{array} $$
(A.13)

Whenever τ is small enough such that 0 < C1τ < 1, we have the following:

$$ \widehat{X}^{n+\frac{1}{2}}-\widehat{Y}^{n+\frac{1}{2}}=0, $$

which implies the following:

$$ X^{n+1}-Y^{n+1}=-(X^{n}-Y^{n})=\cdots=(-1)^{n+1}(X^{0}-Y^{0})=0. $$
(A.14)

From (A.14) and the mathematical induction, we complete the proof of the uniqueness of the solution to the discrete scheme (3.5).

  1. (III)

    To prove the unique solvability of the scheme (3.6), we intend to consider the following homogeneous system:

    $$ \left( 1+\frac{\eta^{2}\tau^{2}}{2}\right)({\Phi}^{n+1}, \omega_{h}) + \frac{\gamma\tau^{2}}{2}\mathcal{C}({\Phi}^{n+1}, \omega_{h})=0, \quad \forall\omega_{h}\in {S_{h}^{r}}. $$
    (A.15)

    Denoting \(\omega _{h}={\Phi }^{n+1}\) in (A.15) reads the following:

    $$ \left( 1+\frac{\eta^{2}\tau^{2}}{2}\right)\|{\Phi}^{n+1}\|^{2} + \frac{\gamma\tau^{2}}{2}|{\Phi}^{n+1}|_{\frac{\beta}{2}}^{2}=0, $$
    (A.16)

    which further implies that Φn+ 1 = 0. Hence, the scheme (3.6) is uniquely solvable.

From (I)–(III), we complete the proof of Theorem 4.4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Huang, C. & Zhao, Y. Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation. Numer Algor 84, 1081–1119 (2020). https://doi.org/10.1007/s11075-019-00793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00793-9

Keywords

Navigation