Skip to main content
Log in

High-Order Compact Difference Methods for Caputo-Type Variable Coefficient Fractional Sub-diffusion Equations in Conservative Form

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A set of high-order compact finite difference methods is proposed for solving a class of Caputo-type fractional sub-diffusion equations in conservative form. The diffusion coefficient of the equation may be spatially variable, and the proposed methods have the global convergence order \(\mathcal{O}(\tau ^{r}+h^{4})\), where \(r\ge 2\) is a positive integer and \(\tau \) and h are the temporal and spatial steps. Such new high-order compact difference methods greatly improve the known methods in the literature. The local truncation error and the solvability of the methods are discussed in detail. By applying a discrete energy technique to the matrix form of the methods, a rigorous theoretical analysis of the stability and convergence of the methods is carried out for the case of \(2\le r\le 6\), and the optimal error estimates in the weighted \(H^{1}\), \(L^{2}\) and \(L^{\infty }\) norms are obtained for the general case of variable coefficient. Applications are given to two model problems, and some numerical results are presented to illustrate the various convergence orders of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klages, R., Radons, G., Sokolov, I.M.: Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim (2008)

    Book  Google Scholar 

  2. Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  3. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C., Liu, F., Turner, I., Anh, V.: Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algorithms 54, 1–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von-Neumann type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mohebbi, A., Abbaszade, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, Q., Liu, F., Turner, I., Anh, V.: Finite element approximation for a modified anomalous subdiffusion equation. Appl. Math. Model. 35, 4103–4116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ford, N.J., Xiao, J., Yan, Y.: A finite element method for the time fractional partial differential equations. Fract. Calc. Appl. Anal. 14, 454–474 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, Y.N., Sun, Z.Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, Y.-M., Wang, T.: Error analysis of a high-order compact ADI method for two-dimensional fractional convection-subdiffusion equations. Calcolo 53, 301–330 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Q., Gu, Y.T., Zhuang, P., Liu, F., Nie, Y.F.: An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48, 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zoppou, C., Knight, J.H.: Analytical solution of a spatially variable coefficient advection–diffusion equation in up to three dimensions. Appl. Math. Model. 23, 667–685 (1999)

    Article  MATH  Google Scholar 

  18. Lai, M., Tseng, Y.: A fast iterative solver for the variable coefficient diffusion equation on a disk. J. Comput. Phys. 208, 196–205 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhao, X., Xu, Q.: Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient. Appl. Math. Model. 38, 3848–3859 (2014)

    Article  MathSciNet  Google Scholar 

  20. Cui, M.: Compact exponential scheme for the time fractional convection–diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cui, M.: Combined compact difference scheme for the time fractional convection–diffusion equation with variable coefficients. Appl. Math. Comput. 246, 464–473 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Vong, S., Lyu, P., Wang, Z.: A compact difference scheme for fractional sub-diffusion equations with the spatially variable coefficient under Neumann boundary conditions. J. Sci. Comput. 66, 725–739 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao, G.H., Sun, Z.Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cao, J.X., Li, C.P., Chen, Y.Q.: High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations (II). Fract. Calc. Appl. Anal. 18, 735–761 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, C.P., Wu, R.F., Ding, H.F.: High-order approximation to Caputo derivative and Caputo-type advection–diffusion equations. Commun. Appl. Ind. Math. 6, e-536 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Li, H.F., Cao, J.X., Li, C.P.: High-order approximations to Caputo derivatives and Caputo-type advection–diffusion equations (III). J. Comput. Appl. Math. 299, 159–175 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ji, C.C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ji, C.C., Sun, Z.Z.: The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation. Appl. Math. Comput. 269, 775–791 (2015)

    MathSciNet  Google Scholar 

  32. Wang, Y.-M.: A high-order compact finite difference method and its extrapolation for fractional mobile/immobile convection–diffusion equations. Calcolo 54, 733–768 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, C.P., Ding, H.F.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)

    Article  MathSciNet  Google Scholar 

  35. Hao, Z.P., Lin, G., Sun, Z.Z.: A high-order difference scheme for the fractional sub-diffusion equation. Int. J. Comput. Math. 94, 405–426 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ding, H.F., Li, C.P.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (III). Fract. Calc. Appl. Anal. 19, 19–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zeng, F., Li, C.P., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, A55–A78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zeng, F.: Second-order stable finite difference schemes for the time-fractional diffusion-wave equation. J. Sci. Comput. 65, 411–430 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zeng, F., Zhang, Z., Karniadakis, G.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zeng, F., Li, C.P., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.: Implicit–explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, A3070–A3093 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, J.Y., Huang, J.F., Liang, D.M., Tang, Y.F.: Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38, 3652–3661 (2014)

    Article  MathSciNet  Google Scholar 

  45. Guo, B.Y., Wang, Y.-M.: An almost monotone approximation for a nonlinear two-point boundary value problem. Adv. Comput. Math. 8, 65–96 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, Y.-M., Guo, B.Y.: A monotone compact implicit scheme for nonlinear reaction-diffusion equations. J. Comput. Math. 26, 123–148 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Zhao, X., Sun, Z.Z.: Compact Crank–Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 747–771 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wu, R.F., Ding, H.F., Li, C.P.: Determination of coefficients of high-order schemes for Riemann–Liouville derivative. Sci. World J. 2014, Article ID 402373, 21 pp (2014)

  49. Ding, H.F.: Finite difference methods for fractional partial differential equations. Doctoral Dissertation, Shanghai University (2014)

  50. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  51. Zorich, V.A.: Mathematical Analysis II. Springer, Berlin (2004)

    MATH  Google Scholar 

  52. Li, C.P., Cai, M.: High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations: revisited. Numer. Funct. Anal. Opt. 38, 861–890 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Varga, R.S.: Matrix Iterative Analysis. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  54. Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  55. Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker, Inc., New York (2001)

    Book  MATH  Google Scholar 

  56. Dimitrov, Y.: Numerical approximations for fractional differential equations. J. Fract. Calc. Appl. 5, 1–45 (2014)

    MathSciNet  Google Scholar 

  57. Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer, Berlin (2008)

    MATH  Google Scholar 

  58. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Dover Publications, Inc., New York (1994)

    MATH  Google Scholar 

  59. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Ming Wang.

Additional information

This work was supported by Science and Technology Commission of Shanghai Municipality (STCSM) (No. 13dz2260400).

Appendix

Appendix

Proof of Proposition 5.1

\(\Longrightarrow \)”: It follows from the result (1) of Lemma 2.2 with \(r_{0}=r\).

\(\Longleftarrow \)”: Let \(y_\mathrm{ex}(t)\) be the extension defined by (2.9) (with r replaced by \(r+1\)). Since \(y^{(k)}(0)=0\) for \(k=0,1,\dots ,r\), we have from the proof of the result (1) of Lemma 2.2 (with \(r_{0}=r\) and \(r^{\prime }=r+1\)) that

$$\begin{aligned} \lim _{|\omega |\rightarrow \infty } \left| \omega \right| ^{2-\alpha } \left| \omega \right| ^{r+\alpha } \left| \hat{y}_\mathrm{ex}(\omega ) \right| = \lim _{|\omega |\rightarrow \infty } \left| \omega \right| ^{r+2} \left| \hat{y}_\mathrm{ex}(\omega ) \right| =\left| y^{(r+1)}(0)\right| . \end{aligned}$$

This implies that the function \(|\omega |^{r+\alpha } \left| \hat{y}_\mathrm{ex}(\omega ) \right| \) is integrable on \(\mathbb {R}\) because of \(2-\alpha >1\), and so \(y_\mathrm{ex}(t)\in \mathscr {C}^{r+\alpha }(\mathbb {R})\), i.e., \(y(t)\in \mathscr {C}^{r+\alpha }[0,T]\). \(\square \)

Proof of Proposition 5.2

Since \(u(x,t)\in C^{0,1}([0,L]\times [0,T])\) and \(\mathcal{L}u(x,t)\in C^{0,1}([0,L]\times [0,T])\), we apply the Caputo fractional derivative operator \({_{~0}^{C}}\mathcal{D}_{t}^{1-\alpha }\) to the governing equation of (1.1) and make use of Lemma 3.13 in [59] to obtain

$$\begin{aligned} \partial _{t} u(x,t)={_{~0}^{C}}\mathcal{D}_{t}^{1-\alpha }(\mathcal{L}u)(x,t)+{_{~0}^{C}}\mathcal{D}_{t}^{1-\alpha }f(x,t), \qquad x\in [0,L]. \end{aligned}$$
(A.1)

By Lemma 3.11 in [59], \({_{~0}^{C}}\mathcal{D}_{t}^{1-\alpha }( \mathcal{L}u )(x,0)=0\). This proves (5.3). \(\square \)

Proof of Proposition 5.3

By integrating by parts, we have that for \(p=1,2,\dots ,r-1\),

$$\begin{aligned}&{_{~0}^{C}}\mathcal{D}_{t}^{\alpha }u(x,t)=\frac{1}{\Gamma (1-\alpha )} \int _{0}^{t} \partial _{s}u(x,s) (t-s)^{-\alpha } \mathrm{d} s\nonumber \\&\quad = \frac{t^{1-\alpha }}{\Gamma (2-\alpha )} \partial _{s} u(x,0)+\frac{1}{\Gamma (2-\alpha )} \int _{0}^{t} \partial _{s}^{2}u(x,s) (t-s)^{1-\alpha } \mathrm{d} s\nonumber \\&\quad = \sum _{l=1}^{p} \frac{t^{l-\alpha }}{\Gamma (l+1-\alpha )} \partial _{s}^{l} u(x,0)+\frac{1}{\Gamma (p+1-\alpha )} \int _{0}^{t} \partial _{s}^{p+1}u(x,s) (t-s)^{p-\alpha } \mathrm{d} s.~~~~\nonumber \\ \end{aligned}$$
(A.2)

This shows that for \(p=1,2,\dots ,r-1\),

$$\begin{aligned} \partial _{t}^{p} ({_{~0}^{C}}\mathcal{D}_{t}^{\alpha })u(x,t)=\sum _{l=1}^{p} \frac{t^{l-\alpha -p}}{\Gamma (l-\alpha -p+1)} \partial _{s}^{l} u(x,0)+{_{~0}^{C}}\mathcal{D}_{t}^{\alpha }(\partial _{t}^{p}u)(x,t)~~(t\not =0). \nonumber \\ \end{aligned}$$
(A.3)

Similarly, for \(p=2,3,\dots ,r\),

$$\begin{aligned} \partial _{t}^{p-1} ({_{~0}^{C}}\mathcal{D}_{t}^{1-\alpha })(\mathcal{L}u)(x,t)= & {} \sum _{l=1}^{p-1} \frac{t^{l+\alpha -p}}{\Gamma (l+\alpha -p+1)} \partial _{s}^{l} (\mathcal{L}u)(x,0)\nonumber \\&+\,{_{~0}^{C}}\mathcal{D}_{t}^{1-\alpha }(\partial _{t}^{p-1}(\mathcal{L}u))(x,t)~~(t\not =0). \end{aligned}$$
(A.4)

Differentiating the governing equation of (1.1) p times with respect to t and then solving for \(\partial _{t}^{p}(\mathcal{L}u)(x,t)\), we obtain

$$\begin{aligned} \partial _{t}^{p}(\mathcal{L}u)(x,t)=\partial _{t}^{p}({_{~0}^{C}}\mathcal{D}_{t}^{\alpha })u(x,t)-\partial _{t}^{p}f(x,t)~~(t\not =0), \qquad p=1,2,\dots , r-1.\nonumber \\ \end{aligned}$$
(A.5)

This implies that for \(x\in [0,L]\),

$$\begin{aligned} \partial _{t}^{p}(\mathcal{L}u)(x,0)=\lim _{t\rightarrow 0} \left( \partial _{t}^{p}({_{~0}^{C}}\mathcal{D}_{t}^{\alpha })u(x,t)-\partial _{t}^{p}f(x,t)\right) , \qquad p=1,2,\dots , r-1.\nonumber \\ \end{aligned}$$
(A.6)

Differentiating the Eq. (A.1) \(p-1\) times with respect to t yields

$$\begin{aligned} \partial _{t}^{p} u(x,t)= & {} \partial _{t}^{p-1} ({_{~0}^{C}}\mathcal{D}_{t}^{1-\alpha })(\mathcal{L}u)(x,t)+\partial _{t}^{p-1}({_{~0}^{C}}\mathcal{D}_{t}^{1-\alpha }f)(x,t)~(t\not =0),\nonumber \\&p=2,3,\dots ,r, \end{aligned}$$
(A.7)

and so for \(x\in [0,L]\),

$$\begin{aligned} \partial _{t}^{p} u(x,0)= & {} \lim _{t\rightarrow 0} \left( \partial _{t}^{p-1} ({_{~0}^{C}}\mathcal{D}_{t}^{1-\alpha })(\mathcal{L}u)(x,t)+\partial _{t}^{p-1}({_{~0}^{C}}\mathcal{D}_{t}^{1-\alpha }f)(x,t)\right) ,\nonumber \\&p=2,3,\dots ,r.~~~~ \end{aligned}$$
(A.8)

By Lemma 3.11 in [59], \({_{~0}^{C}}\mathcal{D}_{t}^{\alpha }(\partial _{t}^{p}u)(x,0)=0\) for \(p=1,2,\dots ,r-1\) and \({_{~0}^{C}}\mathcal{D}_{t}^{1-\alpha }(\partial _{t}^{p-1}(\mathcal{L}u))(x,0)=0\) for \(p=2,3,\dots ,r\). Then the result (5.4) follows by (A.3) and (A.6), and the result (5.5) follows by (A.4) and (A.8). The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YM., Ren, L. High-Order Compact Difference Methods for Caputo-Type Variable Coefficient Fractional Sub-diffusion Equations in Conservative Form. J Sci Comput 76, 1007–1043 (2018). https://doi.org/10.1007/s10915-018-0647-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0647-4

Keywords

Mathematics Subject Classification

Navigation