Skip to main content
Log in

Compact Crank–Nicolson Schemes for a Class of Fractional Cattaneo Equation in Inhomogeneous Medium

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a compact Crank–Nicolson scheme is proposed and analyzed for a class of fractional Cattaneo equation. In developing the scheme, the Crank–Nicolson discretization is applied for the time derivatives both in classical and in fractional definitions. Moreover, a compact operator for the spatial derivative involving variable coefficient is derived. When the variable coefficient is replaced by a unit constant, it reveals a particularly significant situation that the derived compact operator degenerates to the common four-order compact operator for Laplacian. It is proved that the scheme is stable and convergent in \(H^1\) semi-norm via energy method. The convergence orders are \( 3-\gamma \) in time and 4 in space, where \(\gamma \in (1,2)\) is the order of fractional derivative. In addition, a compact Crank–Nicolson alternating direction implicit (ADI) scheme is constructed for the 2D case and the corresponding theoretical analysis is also presented. The derived ADI scheme combines the discretization operators for time both in classical and in fractional forms, which allows the utilization of the modified ADI scheme to reduce the storage requirements and the consumption of CPU time. The applicability and the accuracy of the scheme are demonstrated by numerical experiments in 1D and 2D cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cattaneo, C.: Sulla conduzione del calore. Atti. Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  Google Scholar 

  2. Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A: Math. Gen. 30, 7277–7289 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (2009)

    Google Scholar 

  4. Zakari, M., Jou, D.: Equations of state and transport equations in viscous cosmological models. Phys. Rev. D 48, 1597–1601 (1993)

    Article  Google Scholar 

  5. Godoy, S., García-Colín, L.S.: From the quantum random walk to classical mesoscopic diffusion in crystalline solids. Phys. Rev. D 53, 5779–5785 (1996)

    Google Scholar 

  6. Valdes-Parada, F.J., Ochoa-Tapia, J.A., Alvarez-Ramirez, J.: Effective medium equation for fractional Cattaneo diffusion and heterogeneous reaction in disordered porous media. Phys. A 369, 318–328 (2006)

    Article  MathSciNet  Google Scholar 

  7. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  8. Di Giuseppe, E., Moroni, M., Caputo, M.: Flux in porous media with memory: models and experiments. Transp. Porous Med. 83, 479–500 (2010)

    Article  Google Scholar 

  9. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kosztołwicz, T., Dworecki, K., Mrówczyński, S.: How to measure subdiffusion parameters. Phys. Rev. Lett. 94, 170602 (2005)

    Article  Google Scholar 

  11. Chen, W., Sun, H.G., Zhang, X.D., Korošak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59, 1754–1758 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhao, X., Sun, Z.Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061–6074 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Scherer, R., Kalla, S.L., Tang, Y.F., Huang, J.F.: The Grünwald–Letnikov method for fractional differential equation. Comput. Math. Appl. 62, 902–917 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Metzler, R., Nonnenmacher, T.F.: Fractional diffusion, waiting-time distributions, and Cattaneo-type equations. Phys. Rev. E 57, 6409–6414 (1998)

    Article  MathSciNet  Google Scholar 

  15. Lewandowskaw, K.D.: Application of generalized Cattaneo equation to model subdiffusion impedance. Acta. Phys. Polonica. B 39, 1211–1220 (2008)

    Google Scholar 

  16. Kosztolowicz, T., Lewandowska, K.D.: Hyperbolic subdiffusive impedance. J. Phys. A: Math. Theor. 42, 055004 (2009)

    Article  MathSciNet  Google Scholar 

  17. Bisquert, J., Compte, A.: Theory of the electrochemical impedance of anomalous diffusion. J. Electroanal. Chem. 499, 112–120 (2001)

    Article  Google Scholar 

  18. Povstenko, Y.Z.: Theories of thermoelasticity based on space-time-fractional Cattaneo-type equations. In: Proceedings of FDA’10, the 4th IFAC Workshop Fractional Differentiation and Its Applications, Badajoz, Spain, October 18–20 (2010)

  19. Povstenko, Y.Z.: Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stress. 34, 97–114 (2011)

    Article  Google Scholar 

  20. Qi, H., Jiang, X.: Solutions of the space-time fractional Cattaneo diffusion equation. Phys. A 390, 1876–1883 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ghazizadeh, H.R., Maerefat, M., Azimi, A.: Explicit and implicit finite difference schemes for fractional Cattaneo equation. J. Comput. Phys. 229, 7042–7057 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Li, C.P., Cao, J.X.: A finite difference method for time-fractional telegraph equation. In: 2012 IEEE/ASME International Conference, pp. 314–318

  23. Vong, S.W., Pang, H.K., Jin, X.Q.: A high-order difference scheme for the generalized Cattaneo equation. East Asian J. Appl. Math. 2, 170–184 (2012)

    MATH  MathSciNet  Google Scholar 

  24. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 1–17 (2013)

    Article  MathSciNet  Google Scholar 

  25. Fink, M., Prada, C., Wu, F., Cassereau, D.: Self focusing in inhomogeneous media with time reversal acoustic mirrors. IEEE Ultrason. Symp. Proc. 1, 681–686 (1989)

    Article  Google Scholar 

  26. Dowling, J.P., Bowden, C.M.: Atomic emission rates in inhomogeneous media with applications to photonic band structures. Phys. Rev. A 46, 612–622 (1992)

    Article  Google Scholar 

  27. Brockmann, D., Geisel, T.: Lévy flights in inhomogeneous media. Phys. Rev. Lett. 2003(90), 170601 (2003)

    Article  MathSciNet  Google Scholar 

  28. Stevens, A., Papanicolaou, G., Heinze, S.: Variational principles for propagation speeds in inhomogeneous media. SIAM J. Appl. Math. 62, 129–148 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lai, M., Tseng, Y.: A fast iterative solver for the variable coefficient diffusion equation on a disk. J. Comput. Phys. 208, 196–205 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Klimek, M.: Stationarity-conservation laws for fractional differential equations with variable coefficients. J. Phys. A: Math. Gen. 35, 6675–6693 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical approximation for the twodimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sun, Z.Z.: The Method of Order Reduction and Its Application to the Numerical Solution of Partial Differential Equations. Science Press, Beijing (2009)

    Google Scholar 

  35. Sun, Z.Z.: An unconditionally stable and \(O(\tau ^2+h^4)\) order \(L_\infty \) convergence difference scheme for linear parabolic equation with variable coefficients. Numer. Methods Partial Differ. Eq. 06, 619–631 (2001)

    Article  Google Scholar 

  36. Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternating direction implicit schemes for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Douglas Jr, J.: Alternating direction method for three space variables. Numer. Math. 4, 41–63 (1961)

    Article  Google Scholar 

  38. Douglas Jr, J., Gunn, J.: A general formulation of alternating direction method I Parabolic and hyperbolic problem. Numer. Math. 6, 428–453 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kaminski, W.: Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. ASME J. Heat Transf. 112, 555–560 (1990)

    Article  Google Scholar 

  40. Cui, M.R.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3007 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Chen, C., Liu, F., Turner, I., Anh, V.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  43. Gao, G.H., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2014)

  45. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Zhong Sun.

Additional information

The research is supported by National Natural Science Foundation of China (No. 11271068 and No. 11101080), the Research and Innovation Project for College Graduates of Jiangsu Province (No. CXLX11_0093) and China Scholarship Council.

Appendix

Appendix

Before we prove Lemma 2.3, we give several formulae.

Lemma 6.1

Let \(g(x)\in \mathcal {C}^{2l+1}[x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}],\) then it holds that

$$\begin{aligned} \frac{g(x_{i+\frac{1}{2}})-g(x_{i-\frac{1}{2}})}{h}= \sum _{n=0}^{l-1}\frac{1}{(2n+1)!}\left( \frac{h}{2}\right) ^{2n}g^{(2n+1)}(x_i)+R^l[g]_{i,\frac{h}{2}}, \end{aligned}$$

where

$$\begin{aligned} R^l[g]_{i,\frac{h}{2}}=\frac{1}{2(2l)!}\left( \frac{h}{2}\right) ^{2l}\int \limits _{0}^{1} \left[ g^{(2l+1)}(x_{i}+\frac{h}{2}s)+g^{(2l+1)}(x_{i}-\frac{h}{2}s)\right] (1-s)^{2l}ds, \end{aligned}$$

and there exists a positive constant \(C_l\), which depends on the regularity of function \(g(x)\), such that

$$\begin{aligned} \left| R^l[g]_{i,\frac{h}{2}}\right| \leqslant C_l h^{2l}. \end{aligned}$$

The notation \(R^l[\Theta ]_{\Phi (i),\Psi (h)}\) denotes the remainder term of the asymptotic expansion of the central difference quotient of function \(\Theta \) at the point \(x_{\Phi (i)}\) with step size \(\Psi (h).\)

The approximations in the above lemma with cases \(l=1,\,2\) will be utilized in the following proof. We denote \(C_1,\,C_2\) two generic constants which are independent of space step \(h\) but rely on the regularity of the function whose derivative is approximated, and the value of which may vary at each occurrence. In addition, the following constant \(C\) is defined and used in the similar way.

Lemma 6.2

[34, 45] Let \(g(x)\in \mathcal {C}^6[x_{i-1},x_{i+1}],\) then it holds that

$$\begin{aligned} \frac{g(x_{i+1})-2g(x_{i})+g(x_{i-1})}{h^2}= g''(x_{i})+R[g]_{i,h}, \end{aligned}$$

where

$$\begin{aligned} R[g]_{i,h}=\frac{h^2}{6}\int \limits _{0}^{1} \left[ g^{(4)}(x_{i}+hs)+g^{(4)}(x_{i}-hs)\right] (1-s)^3ds, \end{aligned}$$

then there exists a positive constant \(C\), which depends on the regularity of function \(g(x)\), such that

$$\begin{aligned} \left| R[g]_{i,h}\right| \leqslant C h^{2}. \end{aligned}$$

The above two lemmas are derived by using Taylor expansion with integral remainders. By utilizing the above Lemmas, we complete the proof of Lemma 2.3 in the following.

Proof of Lemma 2.3

We reclaim that the variable coefficient function \(D(x)\) satisfies the smoothness assumptions made thought out the paper. Starting from using Lemma 6.1 with \(l=2,\) we derive the main discrete equation:

$$\begin{aligned} F_i&=\frac{1}{h}\left[ D(x_{i+\frac{1}{2}})g_{x}(x_{i+\frac{1}{2}})-D(x_{i-\frac{1}{2}})g_{x}(x_{i-\frac{1}{2}})\right] -\frac{h^2}{24}f_{xx}(x_i)+R^2[Dg_{x}]_{i,\frac{h}{2}}\nonumber \\&=\frac{1}{h}\left[ D(x_{i+\frac{1}{2}})\left( \delta _{x} G_{i+\frac{1}{2}}-\frac{h^2}{24}g_{xxx}(x_{i+\frac{1}{2}})+R^2[g]_{i+\frac{1}{2},\frac{h}{2}}\right) \right. \nonumber \\&\quad \left. -D(x_{i-\frac{1}{2}})\left( \delta _{x} G_{i-\frac{1}{2}}-\frac{h^2}{24}g_{xxx}(x_{i-\frac{1}{2}})+R^2[g]_{i-\frac{1}{2},\frac{h}{2}}\right) \right] -\frac{h^2}{24}f_{xx}(x_i)+R^2[Dg_{x}]_{i,\frac{h}{2}}, \end{aligned}$$
(6.1)

where

$$\begin{aligned} \left| R^2[\Theta ]_{\Phi (i),\Psi (h)}\right| \leqslant C_2 h^4. \end{aligned}$$
(6.2)

\(\square \)

Next, (6.1) is rewritten as

$$\begin{aligned} F_i&=\delta _{x}(D\delta _{x}G)_i-\frac{h^2}{24}\cdot \frac{1}{h}\left[ D(x_{i+\frac{1}{2}})g_{xxx}(x_{i+\frac{1}{2}})-D(x_{i-\frac{1}{2}})g_{xxx}(x_{i-\frac{1}{2}})\right] \nonumber \\&\quad +\!\frac{1}{h}\left[ D(x_{i\!+\!\frac{1}{2}})R^2[g]_{i\!+\!\frac{1}{2},\frac{h}{2}}\!-\!D(x_{i-\frac{1}{2}})R^2[g]_{i-\frac{1}{2},\frac{h}{2}}\right] \!-\!\frac{h^2}{24}(\delta _{x}^2 F_i\!+\!R[f]_{i,h}) \!+\!R^2[Dg_{x}]_{i,\frac{h}{2}}, \end{aligned}$$
(6.3)

where Lemma 6.2 is used to approximate the second order derivative of \(f\) in (6.1) and the bound for the truncation error \(R[f]_{i,h}\) is

$$\begin{aligned} \left| R[f]_{i,h}\right| \leqslant C h^2. \end{aligned}$$
(6.4)

As similar calculations conducted in [35], we gain the following equality

$$\begin{aligned} D(x)g_{xxx}(x)=f_{x}(x)-2\frac{D_{x}(x)}{D(x)}f(x)+2D_1(x)g_{x}(x). \end{aligned}$$

Owing to the above equality, we can treat the second term at the right hand side of (6.3) as

$$\begin{aligned}&\frac{1}{h}\left[ D(x_{i+\frac{1}{2}})g_{xxx}(x_{i+\frac{1}{2}})-D(x_{i-\frac{1}{2}})g_{xxx}(x_{i-\frac{1}{2}})\right] \nonumber \\&\quad =\!\frac{1}{h}\left[ \left( f_{x}(x)\!-\!2\frac{D_{x}(x)}{D(x)}f(x)\!+\!2{D_1}g_{x}(x)\right) \big |_{x_{i\!+\!\frac{1}{2}}} \!-\!\left( f_{x}(x)\!-\!2\frac{D_{x}(x)}{D(x)}f(x)\!+\!2{D_1}g_{x}(x)\right) \big |_{x_{i\!-\!\frac{1}{2}}}\right] \nonumber \\&\quad =\delta _{x}^2F_i-2\Delta _{x}\left( \frac{D_{x}}{D}F\right) _i+2\delta _{x}({D_1}\delta _{x}G)_i+\frac{1}{h}\left( R^1[f]_{i+\frac{1}{2},h}-R^1[f]_{i-\frac{1}{2},h}\right) \nonumber \\&\qquad -\!2\left( R^1\left[ \frac{D_{x}}{D}f\right] _{i,h}\!-\!R^1\left[ \frac{D_{x}}{D}f\right] _{i,\frac{h}{2}}\right) \!+\!\frac{2}{h}\left( D_1(x_{i+\frac{1}{2}})R^1[g]_{i+\frac{1}{2},h}\!-\!D_1(x_{i-\frac{1}{2}})R^1[g]_{i-\frac{1}{2},h}\right) .\nonumber \\ \end{aligned}$$
(6.5)

From Lemma 6.1, \(R^1[\Theta ]_{\Phi (i),\Psi (h)}\) in the above equality is bounded by

$$\begin{aligned} \left| R^1[\Theta ]_{\Phi (i),\Psi (h)}\right| \leqslant C_1 h^2. \end{aligned}$$
(6.6)

Substituting (6.5) into (6.3) we obtain

$$\begin{aligned} F_i=\delta _{x}(D\delta _{x}G)_i-\frac{h^2}{24}\left[ \delta _{x}^2F_i-2\Delta _{x}\left( \frac{D_{x}}{D}F\right) _i+2\delta _{x}({D_1}\delta _{x}G)_i\right] -\frac{h^2}{24}\delta _{x}^2 F_i+r_i, \end{aligned}$$
(6.7)

i.e.

$$\begin{aligned} F_{i}+\frac{h^2}{12}\left[ \delta _{x}^2F_{i}-\Delta _{x}\left( \frac{D_1}{D}F\right) _{i}\right] =\delta _{x}(D_2\delta _{x}G)_i+r_i, \end{aligned}$$
(6.8)

where

$$\begin{aligned} r_i&=-\frac{h^2}{24}\left[ \frac{1}{h}\left( R^1[f]_{i+\frac{1}{2},h}-R^1[f]_{i-\frac{1}{2},h}\right) -2\left( R^1\left[ \frac{D_{x}}{D}f\right] _{i,h}-R^1\left[ \frac{D_{x}}{D}f\right] _{i,\frac{h}{2}}\right) \right. \nonumber \\&\quad \left. +\frac{2}{h}\left( D_1(x_{i+\frac{1}{2}})R^1[g]_{i+\frac{1}{2},h}-D_1(x_{i-\frac{1}{2}})R^1[g]_{i-\frac{1}{2},h}\right) \right] \nonumber \\&\quad +\frac{1}{h}\left[ D(x_{i+\frac{1}{2}})R^2[g]_{i+\frac{1}{2},\frac{h}{2}}-D(x_{i-\frac{1}{2}})R^2[g]_{i-\frac{1}{2},\frac{h}{2}}\right] -\frac{h^2}{24}R[f]_{i,h}+R^2[Dg_{x}]_{i,\frac{h}{2}}\nonumber \\&=\!\!-\!\frac{h^2}{24}\left[ \text {(I)}\!-\!2\left( R^1\left[ \frac{D_{x}}{D}f\right] _{i,h}\!-\!R^1\left[ \frac{D_{x}}{D}f\right] _{i,\frac{h}{2}}\right) \!\!+\!\!\text {(II)}\right] \!+\!\text {(III)}\!-\!\frac{h^2}{24}R[f]_{i,h}\!+\!R^2[bg_{x}]_{i,\frac{h}{2}}. \end{aligned}$$
(6.9)

Here we analyze \(\text {(I)}\) in the following

$$\begin{aligned} \text {(I)}&=\frac{1}{h}\left( R^1[f]_{i+\frac{1}{2},h}-R^1[f]_{i-\frac{1}{2},h}\right) \nonumber \\&=\frac{h}{2}\int \limits _{0}^{1} \left[ f^{(3)}(x_{i+\frac{1}{2}}+hs)+f^{(3)}(x_{i+\frac{1}{2}}-hs)\right] (1-s)^2ds\nonumber \\&\quad -\frac{h}{2}\int \limits _{0}^{1} \left[ f^{(3)}(x_{i-\frac{1}{2}}+hs)+f^{(3)}(x_{i-\frac{1}{2}}-hs)\right] (1-s)^2ds\nonumber \\&=\frac{h}{2}\int \limits _{0}^{1} \left[ f^{(3)}(x_{i+\frac{1}{2}}+hs)-f^{(3)}(x_{i-\frac{1}{2}}+hs)\right] (1-s)^2ds\nonumber \\&\quad +\frac{h}{2}\int \limits _{0}^{1} \left[ f^{(3)}(x_{i+\frac{1}{2}}-hs)-f^{(3)}(x_{i-\frac{1}{2}}-hs)\right] (1-s)^2ds\nonumber \\&=\frac{h^2}{2}\left[ \int \limits _{0}^{1}\int \limits _{0}^{1}f^{(4)}(x_{i-\frac{1}{2}}+(\lambda _1+s)h)(1-s)^2d\lambda _1 ds\right. \nonumber \\&\qquad \quad \quad \ \ +\left. \int \limits _{0}^{1}\int \limits _{0}^{1}f^{(4)}(x_{i-\frac{1}{2}}+(\lambda _2-s)h)\lambda _2 ds\right] , \end{aligned}$$
(6.10)

then we obtain

$$\begin{aligned} |\text {(I)}|\leqslant C_1'h^2, \end{aligned}$$

where \(C_1'\) is independent of the step size \(h\).

Resort to the same methodology in analysis of \(\text {(I)}\), the bounds of \(\text {(II)}\) and \(\text {(III)}\) are reached in the following

$$\begin{aligned} |\text {(II)}|&\leqslant C_2'h^2,\\ |\text {(III)}|&\leqslant C_3'h^4. \end{aligned}$$

Noticing (6.2), (6.4) and (6.6), the bounds of last three terms in (6.9) are obviously shown. We finish the proof of Lemma 2.3 by substituting the bounds of \(\text {(I)}\), \(\text {(II)}\) and \(\text {(III)}\) into (6.9).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Sun, ZZ. Compact Crank–Nicolson Schemes for a Class of Fractional Cattaneo Equation in Inhomogeneous Medium. J Sci Comput 62, 747–771 (2015). https://doi.org/10.1007/s10915-014-9874-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9874-5

Keywords

Navigation