Skip to main content
Log in

Reflections on the conformation, topology and thermodynamics of a polyelectrolyte chain in the presence of counterions with plausible applications

  • Review
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 21 June 2013

Abstract

The simulation results from a basic polyelectrolyte chain consisting of an anionic string of 150 univalent negatively charged particles connected under various harmonic-like potential interactions with each other in the presence of a similar number of positive and free counter ions found in Jesudason et al. (EPJE \(30\):341–350, 2009) forms the focal point for further discussion on chain models based on a survey of more recent developments in general polyelectrolyte theory. The topics discussed include persistence length definition, forcefields and methods of controlling simulation parameters, and thermodynamics. The data for the basic system was derived for the temperature range \(0.1\)\(10.0\) in reduced units (corresponding to \(\xi =10\text{-- }0.1\)); the augmented data involves a \(360\) monomer chain. The data include the total and Coulombic energies, radial distribution functions, radii of gyration, end-to-end distances and snapshots of the system which are all discussed anew. Polyelectrolyte systems have been overwhelmingly associated with biophysical interpretations, but here it is suggested that these detailed studies and the consequent theoretical formulations could be extended further afield; non-biological ionic liquid systems with catalytic and energy storage applications are some of many other possibilities. However, the approach used by MD simulations to validate ionic liquid systems as carriers of molecules with catalytic moieties often refer to CPMD and DFT quantum methods, which is not the current norm as judged by the literature in especially coarse grained polyelectrolyte MD. The quantum approach could also be used for more detailed analysis of biophysical systems where one trend seems to be that the incorporation of details in simulations accounts for phenomena not explicable in coarser grained MD, for instance if conventional atomic ionic charges are assigned to all atom modeling. This is illustrated by a linear chain modeling a DNA polymer using different charge and size assignments for the same linear charge density. The trends are such that it might be expected that some form of routine standardization of force fields in the spirit of the Jorgensen OPLS-AA method that incorporates quantum calculations specific to a system will be implemented as a routine as refinements are seen to lead to more comprehensive rationalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. I am grateful to a reviewer for emphasizing the role of the counterions that is sometimes neglected in PB theory analysis.

References

  1. C.G. Jesudason, A.P. Lyubartsev, A. Laaksonen, Conformational characteristics of a single flexible polyelectrolyte chain. EPJE 30, 341–350 (2009)

    Google Scholar 

  2. A.A.J. Agung, Polyelectrolyte models and molecular dynamics studies of the DNA polymer and DNA-NCP complexes in salt solutions. M.Sc. Dissertation; Jesudason, C.G., Supervisor; University of Malaya (Science Faculty): Kuala Lumpur, Malaysia, (2011)

  3. A.G. Cherstvy, Electrostatic interactions in biological DNA-related systems. PCCP 13, 68–9942 (2011)

    Google Scholar 

  4. A.G. Cherstvy, Collapse of highly charged polyelectrolytes triggered by attractive dipole-dipole and correlation-induced electrostatic interactions. J. Phys. Chem. B 114, 5241–9 (2010)

    Article  CAS  Google Scholar 

  5. A.G. Cherstvy, Effect of a low-dielectric interior on DNA electrostatic response to twisting and bending. J. Phys. Chem. B 111, 12933–12937 (2007)

    Article  CAS  Google Scholar 

  6. A.G. Cherstvy, R. Everaers, Layering, bundling, and azimuthal orientations in dense phases of nucleosome core particles. J. Phys. Condens. Matter 18, 11429–11442 (2006)

    Article  CAS  Google Scholar 

  7. N. Korolev, A.P. Lyubartsev, L. Nordenskiold, Application of polyelectrolyte theories for analysis of DNA melting in the presence of Na\(^+\) and Mg\(^{2+}\) ions. Biophys. Chem. 75, 3041–3056 (1998)

    CAS  Google Scholar 

  8. N. Korolev, A.P. Lyubartsev, A. Laaksonen, Electrostatic background of chromatin fiber stretching. J. Biomol. Struct. Dyn. 22, 215–226 (2002)

    Article  Google Scholar 

  9. D. Stigter, Evaluation of the counterion condensation theory of poly-electrolytes. Biophys. J. 69, 380–388 (1995)

    Article  CAS  Google Scholar 

  10. J. Jeon, A.V. Dobrynin, Necklace globule and counterion condensation. Macromolecules 40, 7695–7706 (2007)

    Article  CAS  Google Scholar 

  11. R. Kumar, G.H. Fredrickson, Theory of polyzwitterion conformations. J. Chem. Phys. 131, 104901 (2009)

    Article  Google Scholar 

  12. K.K. Kunze, R.R. Netz, Salt-induced DNA-histone complexation. PRL 85, 92–4389 (2000)

    Article  Google Scholar 

  13. Q. Liao, A.V. Dobrynin, M. Rubinstein, C. Hill, N. Carolina, Counterion-correlation-induced attraction and Necklace formation in polyelectrolyte solutions: theory and simulations. Macromolecules 39, 1920–1938 (2006)

    Article  CAS  Google Scholar 

  14. G.S. Manning, The interaction between a charged wall and its counterions: a condensation theory. J. Phys. Chem. B 114, 5435–40 (2010)

    Article  CAS  Google Scholar 

  15. S.G. Walker, C.J. Dale, A. Lyddiatt, G.S. Manning, Counterion condensation theory constructed from different models. Physica A 231, 236–253 (1996)

    Article  Google Scholar 

  16. G.S. Manning, Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 51, 924–933 (1969)

    Article  CAS  Google Scholar 

  17. M. Muthukumar, Adsorption of a polyelectrolyte chain to a charged surface. J. Chem. Phys. 86, 7230–35 (1987)

    Article  CAS  Google Scholar 

  18. M. Muthukumar, Theory of counter-ion condensation on flexible polyelectrolytes: adsorption mechanism. J. Chem. Phys. 120, 9343–9350 (2004)

    Article  CAS  Google Scholar 

  19. P. Loh, G.R. Deen, D. Vollmer, K. Fischer, M. Schmidt, A. Kundagrami, M. Muthukumar, Collapse of linear polyelectrolyte chains in a poor solvent: when does a collapsing polyelectrolyte collect its counterions? Macromolecules 41, 9352–9358 (2008)

    Article  CAS  Google Scholar 

  20. A. Kundagrami, M. Muthukumar, Effective charge and coil-globule transition of a polyelectrolyte chain. Macromolecules 43, 2574–2581 (2010)

    Article  CAS  Google Scholar 

  21. Z. Ou, M. Muthukumar, Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations. J. Chem. Phys. 124, 154902(1–11) (2006)

  22. R. Winkler, M. Gold, P. Reineker, Collapse of polyelectrolyte macromolecules by counterion condensation and ion pair formation: a molecular dynamics simulation study. PRL 80(17), 3731–3734 (1998)

    Article  CAS  Google Scholar 

  23. R. Winkler, M. Steinhauser, P. Reineker, Complex formation in systems of oppositely charged polyelectrolytes: a molecular dynamics simulation study. Phys. Rev. E 66, 021802 (2002)

    Article  Google Scholar 

  24. A.A. Kornyshev, S. Leikin, Theory of interaction between helical molecules. J. Chem. Phys. 107, 3656–74 (1997)

    Article  CAS  Google Scholar 

  25. A. Kornyshev, D. Lee, S. Leikin, A. Wynveen, Structure and interactions of biological helices. Rev. Mod. Phys. 79(3), 943–996 (2007)

    Article  CAS  Google Scholar 

  26. T. Nguyen, B. Shklovskii, Persistence length of a polyelectrolyte in salty water: Monte Carlo study. Phys. Rev. E 66, 021801 (2002)

    Article  CAS  Google Scholar 

  27. A.P. Lyubartsev, L. Nordenskiöld, Monte Carlo simulation study of DNA polyelectrolyte properties in the presence of multivalent polyamine ions. J. Phys. Chem. B 101, 4335–4342 (1997)

    Article  CAS  Google Scholar 

  28. A.P. Lyubartsev, L. Nordenskiöld, Computer simulations of polyelectrolytes, in Handbook of Polyelectrolytes and Their Applications, vol 3. Applications of Polyelectrolytes and Theoretical Models, ed. by S.K. Tripathy, J. Kumar, H.S. Nalwa (American Scientific Publishers, California, USA, 2002), pp. 309–326. Chap. 11

    Google Scholar 

  29. N.A. Volkov, P.N. Vorontsov-Velyaminov, A.P. Lyubartsev, Entropic sampling of flexible polyelectrolytes within the Wang-Landau algorithm. Phys. Rev. E 75, 016705-(1–10) (2007)

    Article  Google Scholar 

  30. R.H. French, R. Podgornik, R.F. Rajter, A. Jagota, J. Luo, D. Asthagiri, M.K. Chaudhury, Y. Chiang, S. Granick, S. Kalinin, M. Kardar, R. Kjellander, D.C. Langreth, J. Lewis, S. Lustig, D. Wesolowski, J.S. Wettlaufer, W. Ching, M. Finnis, F. Houlihan, O.A. von Lilienfeld, C.J. van Oss, T. Zemb, Long range interactions in nanoscale science. Rev. Mod. Phys. 82, 1887–1944 (2010)

    Article  Google Scholar 

  31. S. Leikin, V.A. Parsegian, D.C. Rau, Hydration forces. Annu. Rev. Phys. Chem. 44, 369–395 (1993)

    Article  CAS  Google Scholar 

  32. Y. Hayashi, M. Ullner, P. Linse, Complex formation in solutions of oppositely charged polyelectrolytes at different polyion compositions and salt content. J. Phys. Chem. B 107, 8198–8207 (2003)

    Article  CAS  Google Scholar 

  33. Y. Hayashi, M. Ullner, P. Linse, A Monte Carlo study of solutions of oppositely charged polyelectrolytes. J. Chem. Phys. 116(15), 6836–6845 (2002)

    Article  CAS  Google Scholar 

  34. P. Linse, Simulation of charged colloids in solution. Adv. Polym. Sci. 185, 111–162 (2005)

    Google Scholar 

  35. M. Ullner, C.E. Woodward, Orientational correlation function and persistence lengths of flexible polyelectrolytes. Macromolecules 35, 1437–1445 (2002)

    Article  CAS  Google Scholar 

  36. P.N. Vorontsov-Velyaminov, N.A. Volkov, A.A. Yurchenko, Entropic sampling of simple polymer models within Wang-Landau algorithm. J. Phys. A 37, 1573–1588 (2004)

    Article  Google Scholar 

  37. J. Klos, T. Pakula, Lattice Monte Carlo simulations of three-dimensional charged polymer chains. J. Chem. Phys. 120(5), 2496–2501 (2004)

    Article  CAS  Google Scholar 

  38. H. Limbach, A. Arnold, B.A. Mann, C. Holm, ESPResSo—an extensible simulation package for research on soft matter systems. Comput. Phys. Commun. 174(9), 704–727 (2006)

    Article  CAS  Google Scholar 

  39. M. Deserno, C. Holm, How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 109(18), 7678–7693 (1998)

    Article  CAS  Google Scholar 

  40. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984)

    Article  CAS  Google Scholar 

  41. B.Y. Ha, D. Thirumalai, Electrostatic persistence length of a polyelectrolyte chain. Macromolecules 28, 577–581 (1995)

    Article  CAS  Google Scholar 

  42. A.Y. Grosberg, A.R. Kholkhlov, Statistical physics of macromolecules (AIP Press, New York, USA, 1994)

    Google Scholar 

  43. T. Odijk, Polyelectrolytes near the rod limit. J. Poly. Sci. Poly. Phys. Ed. 15, 477–483 (1977)

    Article  CAS  Google Scholar 

  44. J. Skolnick, M. Fixman, Electrostatic persistence length of a wormlike polyelectrolyte. Macromolecules 10, 944–948 (1977)

    Article  CAS  Google Scholar 

  45. A.V. Dobrynin, Electrostatic persistence length of semiflexible and flexible polyelectrolytes. Macromolecules 38, 9304–9314 (2005)

    Article  CAS  Google Scholar 

  46. G.S. Manning, The persistence length of DNA is reached from the persistence length of Its null isomer through an internal electrostatic stretching force. Biophys. J. 91, 3607–3616 (2006)

    Article  CAS  Google Scholar 

  47. B.S. Smith, L. Finzi, C. Bustamante, Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992)

    Article  CAS  Google Scholar 

  48. E. Nordmeier, Absorption and dynamic and static light-scattering studies of ethidium bromide binding to Calf Thymus DNA: implications for outside binding and intercalation. J. Phys. Chem. 96, 6045–6055 (1992)

    Article  CAS  Google Scholar 

  49. C. Baumann, B.S. Smith, A.V. Bloomfield, C. Bustamante, Ionic effect on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. USA 94, 6185–6190 (1997)

    Article  CAS  Google Scholar 

  50. V. Rizzo, J.A. Schellman, Flow dichroism of T7 DNA as a function of salt concentration. Biopolymers 20, 2143–2163 (1981)

    Article  CAS  Google Scholar 

  51. I.T. Todorav, W. Smith, THE \(\text{ DL }\_\text{ POLY }\_\text{ MANUAL }\); Version 4.03.4; STFC Daresbury Laboratory. (Daresbury, UK, 2012, June)

  52. P. Hunt, E.J. Maginn, R.M. Lynden-Bell, M.G. Del Popolo, Computational modeling of ionic liquids, in Ionic Liquids in Synthesis, vol. 1, ed. by P. Wasserscheid, T. Welton (Darmstadt, Germany, 2008), pp. 206–249

  53. D.F. Evans, H. Wennerström, The Colloidal Domain, 2nd edn. (Wiley-VCH, New York, USA, 1999)

  54. C.G. Jesudason, Model hysteresis dimer molecule II: deductions from probability profile due to system coordinates. JOMC 42(14), 893–908 (2007)

    CAS  Google Scholar 

  55. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)

    Article  CAS  Google Scholar 

  56. T.G.A. Youngs, Aten—An application for the creation, editing, and visualization of coordinates for glasses, liquids, crystals, and molecules. J. Comput. Chem. 31, 639–648 (2009)

    Google Scholar 

  57. L. Zhao, Q. Yang, Q. Ma, C. Zhong, J. Mi, D. Liu, A force field for dynamic Cu-BTC metal-organic framework. J. Mol. Model. 17, 227–234 (2011)

    Article  CAS  Google Scholar 

  58. R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functional theory. PRL 55(22), 2471–2474 (1985)

    Article  CAS  Google Scholar 

  59. N. Canongia Lopes, J. Deschamps, A.A.H. Padua, Modeling ionic liquids using a systematic all-atom force field. J. Phys 108, 2038–2047 (2004)

    Google Scholar 

  60. M.S. Kelkar, W. Shi, E.J. Maginn, Determining the accuracy of classical force fields for ionic liquids: atomistic simulation of the thermodynamic and transport properties of 1-Ethyl-3-methylimidazolium ethylsulfate ([emim][EtSO\(_4\)]) and its mixtures with water. Ind. Eng. Chem. Res. 47, 9115–9126 (2008)

    Google Scholar 

  61. N. Canongia Lopes, J. Deschamps, A.A.H. Padua, Molecular force field for ionic liquids IV: trialkylimidazolium and alkoxycarbonyl-Imidazolium cations; alkylsulfonate and alkylsulfate anions. J. Phys. Chem. B 112, 5039–5046 (2008)

    Article  CAS  Google Scholar 

  62. M. Wilhelm, A. Mukherjee, B. Bouvier, K. Zakrzewska, J.T. Hynes, R. Lavery, Multistep drug intercalation: molecular dynamics and free energy studies of the binding of daunomycin to DNA. J. Am. Chem. Soc. 134, 8588–8596 (2012)

    Google Scholar 

  63. S. Sacquin-Mora, R. Lavery, Modeling the mechanical response of proteins to anisotropic deformation. Chem. Phys. Chem. 10, 115–118 (2009)

    Article  CAS  Google Scholar 

  64. V.I. Parvulescu, C. Hardacre, Catalysis in ionic liquids. Chem. Rev. 107, 2615–2665 (2007)

    Article  CAS  Google Scholar 

  65. J. Dupont, R.F. de Souza, P.A.Z. Suarez, Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 102, 3667–3692 (2002)

    Article  CAS  Google Scholar 

  66. R.A.A. Melo, M.V. Giotto, J. Rocha, E.A. Urquieta-González, MCM-41 ordered mesoporous molecular sieves synthesis and characterization. Mater. Res. 2, 173–179 (1999)

    CAS  Google Scholar 

  67. A.J. de Kerchove, P. Weronski, M. Elimelech, Adhesion of nonmotile pseudomonas aeruginosa on “Soft” polyelectrolyte layer in a radial stagnation point flow system: measurements and model predictions. Langmuir 23, 12301–12308 (2007)

    Article  Google Scholar 

  68. R.K. Pathria, P.D. Beale, Statistical Mechanics, 1st edn. (Elsevier, Amsterdam, 2011)

    Google Scholar 

  69. N. Korolev, A.P. Lyubartsev, L. Nordenskiöld, Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails. Biophys. J. 90, 4305–4316 (2006)

    Google Scholar 

Download references

Acknowledgments

C.G.J would like to thank 1) C. Hardacre (School of Chemistry and Chemical Engineering) and J. Kohanoff (Atomistic Simulation Centre, School of Mathematics and Physics) both of QUB, Belfast for a congenial sabbatical environment where this was written and 2) Malaysian FRGS National Grant FP084/2010A and Univ. Malaya grant UMRG RG077/09AFR for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Jesudason.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jesudason, C.G., Agung, A.J.P. Reflections on the conformation, topology and thermodynamics of a polyelectrolyte chain in the presence of counterions with plausible applications. J Math Chem 51, 1479–1514 (2013). https://doi.org/10.1007/s10910-013-0159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0159-2

Keywords

Mathematics Subject Classification (2000)

Navigation