Skip to main content
Log in

Seebeck Power Generation and Peltier Cooling in a Normal Metal-Quantum Dot-Superconductor Nanodevice

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We theoretically investigate the Seebeck and Peltier effect across an interacting quantum dot (QD) coupled between a normal metal and a Bardeen–Cooper–Schrieffer superconductor within the Coulomb blockade regime. Our results demonstrate that the thermoelectric conversion efficiency at optimal power output (optimized with respect to QD energy level and external serial load) in NQDS nanodevice can reach up to \(58\%\eta _\text{C}\), where \(\eta _\text{C}\) is Carnot efficiency, with output power \(P_{\text {max}}\approx 35\,\text{fW}\) for temperature below the superconducting transition temperature. Further, the Peltier cooling effect is observed for a wide range of parameter regimes, which can be optimized by varying the background thermal energy, QD level energy, QD-reservoir tunneling strength, and bias voltage. The results presented in this study are within the scope of existing experimental capabilities for designing miniature hybrid devices that operate at cryogenic temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Krawiec, Acta Phys. Pol. A 114, 115 (2008). https://doi.org/10.12693/APhysPolA.114.115

    Article  CAS  ADS  Google Scholar 

  2. K.I. Wysokiński, J. Phys. Condens. Matter. 24, 335303 (2012). https://doi.org/10.1088/0953-8984/24/33/335303

    Article  CAS  PubMed  Google Scholar 

  3. S.Y. Hwang, R. López, D. Sánchez, Phys. Rev. B 91, 104518 (2015). https://doi.org/10.1103/PhysRevB.91.104518

    Article  CAS  ADS  Google Scholar 

  4. B. Sothmann, R. Sánchez, A.N. Jordan, Nanotechnology 26, 032001 (2015). https://doi.org/10.1088/0957-4484/26/3/032001

    Article  CAS  PubMed  ADS  Google Scholar 

  5. S.Y. Hwang, D. Sánchez, R. López, New J. Phys. 18, 093024 (2016). https://doi.org/10.1088/1367-2630/18/9/093024

    Article  ADS  Google Scholar 

  6. S.Y. Hwang, R. López, D. Sánchez, Phys. Rev. B 94, 054506 (2016). https://doi.org/10.1103/PhysRevB.94.054506

    Article  ADS  Google Scholar 

  7. D. Sánchez, R. López, C. R. Phys. 17, 1060 (2016). https://doi.org/10.1016/j.crhy.2016.08.005

    Article  CAS  ADS  Google Scholar 

  8. W.P. Xu, Y.Y. Zhang, Q. Wang, Z.J. Li, Y.H. Nie, Phys. Lett. A 380, 958 (2016). https://doi.org/10.1016/j.physleta.2015.12.032

    Article  CAS  ADS  Google Scholar 

  9. Y. Kleeorin, Y. Meir, F. Giazotto, Y. Dubi, Sci. Rep. 6, 35116 (2016). https://doi.org/10.1038/srep35116

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. L. Xu, Z. Li, Q. Wang, Y. Nie, AIP Adv. 6, 125012 (2016). https://doi.org/10.1063/1.4971844

    Article  CAS  ADS  Google Scholar 

  11. G. Benenti, G. Casati, K. Saito, R.S. Whitney, Phys. Rep. 694, 1–124 (2017). https://doi.org/10.1016/j.physrep.2017.05.008

    Article  MathSciNet  CAS  ADS  Google Scholar 

  12. S.-Y. Hwang, D. Sánchez, R. López, Eur. Phys. J. B 90, 189 (2017). https://doi.org/10.1140/epjb/e2017-80242-1

    Article  CAS  ADS  Google Scholar 

  13. P. Trocha, J. Barnaś, Phys. Rev. B 95, 165439 (2017). https://doi.org/10.1103/PhysRevB.95.165439

    Article  ADS  Google Scholar 

  14. S.-Y. Hwang, D. Sánchez, J. Phys. Conf. Ser. 969, 012139 (2018). https://doi.org/10.1088/1742-6596/969/1/012139

    Article  CAS  Google Scholar 

  15. H. Yao, C. Zhang, Z.-J. Li, Y.-H. Nie, P.-B. Niu, J. Phys. D Appl. Phys. 51, 175301 (2018). https://doi.org/10.1088/1361-6463/aab6e4

    Article  CAS  ADS  Google Scholar 

  16. H. Yao, C. Zhang, P.-B. Niu, Z.-J. Li, Y.-H. Nie, Phys. Lett. A 382, 3220 (2018). https://doi.org/10.1016/j.physleta.2018.08.033

    Article  MathSciNet  CAS  ADS  Google Scholar 

  17. M. Kamp, B. Sothmann, Phys. Rev. B 99, 045428 (2019). https://doi.org/10.1103/PhysRevB.99.045428

    Article  CAS  ADS  Google Scholar 

  18. S. Verma, A. Singh, J. Phys. Condens. Matter. 34, 155601 (2022). https://doi.org/10.1088/1361-648X/ac4ced

    Article  CAS  ADS  Google Scholar 

  19. S.M. Tabatabaei, D. Sánchez, A.L. Yeyati, R. Sánchez, Phys. Rev. B 106, 115419 (2022). https://doi.org/10.1103/PhysRevB.106.115419

    Article  CAS  ADS  Google Scholar 

  20. H. Yao, C.-P. Cheng, L.-L. Li, R. Guo, Y. Guo, C. Zhang, Nanoscale Adv. 5, 1199 (2023). https://doi.org/10.1039/D2NA00838F

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. B. Kumar, S. Verma, Ajay, J. Supercond. Nov. Magn. 36, 831 (2023). https://doi.org/10.1007/s10948-023-06526-3

  22. S.-Y. Hwang, B. Sothmann, D. Sánchez, Phys. Rev. B 107, 245412 (2023). https://doi.org/10.1103/PhysRevB.107.245412

    Article  CAS  ADS  Google Scholar 

  23. A. Martín-Rodero, A.L. Yeyati, Adv. Phys. 60, 899–958 (2011). https://doi.org/10.1080/00018732.2011.624266

    Article  ADS  Google Scholar 

  24. F. Giazotto, T.T. Heikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2009). https://doi.org/10.1103/RevModPhys.78.217

    Article  CAS  ADS  Google Scholar 

  25. E.A. Laird, F. Kuemmeth, G.A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, L.P. Kouwenhoven, Rev. Mod. Phys. 87, 703 (2015). https://doi.org/10.1103/RevModPhys.87.703

    Article  CAS  ADS  Google Scholar 

  26. J.P. Pekola, B. Karimi, Rev. Mod. Phys. 93, 041001 (2021). https://doi.org/10.1103/RevModPhys.93.041001

    Article  CAS  ADS  Google Scholar 

  27. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993). https://doi.org/10.1103/PhysRevB.47.12727

    Article  CAS  ADS  Google Scholar 

  28. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631(R) (1993). https://doi.org/10.1103/PhysRevB.47.16631

    Article  ADS  Google Scholar 

  29. L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus, Phys. Rev. B 53, R10493(R) (1996). https://doi.org/10.1103/PhysRevB.53.R10493

    Article  ADS  Google Scholar 

  30. G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. U. S. A. 93, 7436 (1996). https://doi.org/10.1073/pnas.93.15.743

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. M. Josefsson, A. Svilans, A.M. Burke, E.A. Hoffmann, S. Fahlvik, C. Thelander, M. Leijnse, H. Linke, Nat. Nanotech 13, 920–924 (2018). https://doi.org/10.1038/s41565-018-0200-5

    Article  CAS  ADS  Google Scholar 

  32. M. Josefsson, A. Svilans, H. Linke, M. Leijnse, Phys. Rev. B 99, 235432 (2019). https://doi.org/10.1103/PhysRevB.99.235432

    Article  CAS  ADS  Google Scholar 

  33. D. Majidi, M. Josefsson, M. Kumar, M. Leijnse, L. Samuelson, H. Courtois, C.B. Winkelmann, V.F. Maisi, Nano Lett. 22, 630–635 (2022). https://doi.org/10.1021/acs.nanolett.1c03437

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. A.S. Dzurak, C.G. Smith, M. Pepper, D.A. Ritchie, J.E.F. Frost, G.A.C. Jones, D.G. Hasko, Solid State Commun. 87, 1145–1149 (1993). https://doi.org/10.1016/0038-1098(93)90819-9

  35. L. Molenkamp, A.A.M. Staring, B.W. Alphenaar, H. van Houten, C.W.J. Beenakker, Semicond. Sci. Technol. 9, 903 (1994). https://doi.org/10.1088/0268-1242/9/5S/136

  36. D. Prete, P.A. Erdman, V. Demontis, V. Zannier, D. Ercolani, L. Sorba, F. Beltram, F. Rossella, F. Taddei, S. Roddaro, Nano Lett. 91, 3033–3039 (2019). https://doi.org/10.1021/acs.nanolett.9b00276

  37. J. Hubbard, Proc. R. Soc. Lond. A 276, 238–257 (1963). https://doi.org/10.1098/rspa.1963.0204

    Article  ADS  Google Scholar 

  38. Hartmut J.W. Haug, A-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors:, Solid-State Sciences, Vol. 123 (Springer-Verlag, Berlin, HD, 2008) Ch.12, p.181. https://doi.org/10.1007/978-3-540-73564-9

  39. L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515–1527 (1964) [Sov. Phys. JETP 20, 1018 (1965)]. http://www-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/Keldysh.pdf

  40. Yigal Meir, Ned S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992). https://doi.org/10.1103/PhysRevLett.68.2512

    Article  CAS  PubMed  ADS  Google Scholar 

  41. J.-S. Wang, J. Wang, N. Zeng, Phys. Rev. B 74, 033408 (2006). https://doi.org/10.1103/PhysRevB.74.033408

    Article  CAS  ADS  Google Scholar 

  42. J.-S. Wang, B.K. Agarwalla, H. Li, J. Thingna, Front. Phys. 9, 673–697 (2014). https://doi.org/10.1007/s11467-013-0340-x

    Article  ADS  Google Scholar 

  43. K. Yamamoto, N. Hatano, Phys. Rev. E 92, 042165 (2015). https://doi.org/10.1103/PhysRevE.92.042165

    Article  CAS  ADS  Google Scholar 

  44. F.C. Wellstood, C. Urbina, J. Clarke, Phys. Rev. B 49, 5942 (1994). https://doi.org/10.1103/PhysRevB.49.5942

    Article  CAS  ADS  Google Scholar 

  45. J.C. Cuevas, A. Martín-Rodero, A.L. Yeyati, Phys. Rev. B 54, 7366 (1996). https://doi.org/10.1103/PhysRevB.54.7366

    Article  CAS  ADS  Google Scholar 

  46. T.K. Ng, Phys. Rev. Lett. 76, 487 (1996). https://doi.org/10.1103/PhysRevLett.76.487

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

Sachin Verma is presently a research scholar at the department of physics IIT Roorkee and is highly thankful to the Ministry of Education (MoE), India, for providing financial support in the form of a Ph.D. fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sachin Verma or Ajay Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we present the calculation for the Green’s functions and occupancy of the QD. In Nambu representation, we define the single particle retarded Green’s function of the QD as a \(2\times 2\) matrices [45]

$$\begin{aligned} \mathbf{{G}}^{r}_{d}(\omega )={\left\langle \left\langle { \begin{pmatrix} d_{\uparrow }\\ d_{\downarrow }^{\dagger }\\ \end{pmatrix} \begin{pmatrix} d_{\uparrow }^{\dagger }&d_{\downarrow } \end{pmatrix} }\right\rangle \right\rangle }= \begin{pmatrix} \langle \langle {d_{\uparrow }|d_{\uparrow }^{\dagger }}\rangle \rangle &{} \langle \langle {d_{\uparrow }|d_{\downarrow }}\rangle \rangle \\ \langle \langle {d_{\downarrow }^{\dagger }|d_{\uparrow }^{\dagger }}\rangle \rangle &{} \langle \langle {d_{\downarrow }^{\dagger }|d_{\downarrow }}\rangle \rangle \\ \end{pmatrix}= \begin{pmatrix} G^r_{d,11}(\omega ) &{} G^r_{d,12}(\omega ) \\ G^r_{d,21}(\omega ) &{} G^r_{d,22}(\omega ) \\ \end{pmatrix} \end{aligned}$$

where the diagonal components of \(\mathbf{{G}}^{r}_{d}(\omega )\) represents the single particle retarded Green’s function of electron with spin \(\sigma =\uparrow\) and hole with spin \(\sigma =\downarrow\) , respectively. The off-diagonal component represents the superconducting paring correlation on the QD. The Fourier transform of the single particle retarded Green’s function for QD

$$\begin{aligned} \begin{aligned} G_{d,11}^r(\omega )=\langle \langle {d_{\uparrow }|d^\dagger _{\uparrow }}\rangle \rangle \nonumber =-\frac{i}{2\pi }\lim _{\delta \rightarrow 0^{+}}\int {\theta (t)\langle \{d_{\uparrow }(t),d^\dagger _{\uparrow }(0)\}\rangle e^{i(\omega +i\delta )t}}dt \end{aligned} \end{aligned}$$

where \(\theta (t)\) is Heaviside function, must satisfy the following EOM [38]

$$\begin{aligned} \omega \langle \langle {d_{\uparrow }|d^\dagger _{\uparrow }}\rangle \rangle =\langle \{d_{\sigma },d^\dagger _{\uparrow }\}\rangle +\langle \langle [d_{\uparrow },H]|d^\dagger _{\uparrow }\rangle \rangle . \end{aligned}$$

By evaluating different commutator and anti-commutator brackets we drive the following coupled equations for the single particle Green’s functions

$$\begin{aligned} \left\{ \omega -\epsilon _d-\sum _k\frac{|\mathcal {V}_{k,N}|^2}{\omega -\epsilon _{k,N}}-\sum _k|\mathcal {V}_{k,S}|^2\left( \frac{|u_k|^2}{\omega -E_k}+\frac{|v_k|^2}{\omega +E_k}\right) \right\} \langle \langle {d_{\uparrow }|d_{\uparrow }^{\dagger }}\rangle \rangle = \\ 1+\left\{ {\sum _k|\mathcal {V}_{k,S}|^2u^*_kv_k\left( \frac{1}{\omega -E_k}-\frac{1}{\omega +E_k}\right) }\right\} \langle \langle {d_{\downarrow }^{\dagger }|d_{\uparrow }^{\dagger }}\rangle \rangle +U\langle \langle {d_{\uparrow }n_{\downarrow }|d_{\uparrow }^{\dagger }}\rangle \rangle \end{aligned}$$
$$\begin{aligned} \left\{ \omega +\epsilon _d-\sum _k\frac{|\mathcal {V}_{k,N}|^2}{\omega +\epsilon _{k,N}}-\sum _k|\mathcal {V}_{k,S}|^2\left( \frac{|u_k|^2}{\omega +E_k}+\frac{|v_k|^2}{\omega -E_k}\right) \right\} \langle \langle {d_{\downarrow }^{\dagger }|d_{\uparrow }^{\dagger }}\rangle \rangle = \\ \left\{ {\sum _k|\mathcal {V}_{k,S}|^2u_kv^*_k\left( \frac{1}{\omega -E_k}-\frac{1}{\omega +E_k}\right) }\right\} \langle \langle {d_{\uparrow }|d_{\uparrow }^{\dagger }}\rangle \rangle -U\langle \langle {d_{\downarrow }^{\dagger }n_{\uparrow }|d_{\uparrow }^{\dagger }}\rangle \rangle \end{aligned}$$
$$\begin{aligned} \left\{ \frac{\omega -\epsilon _d-U}{\langle {n_{\downarrow }}\rangle }\right\} \langle \langle {d_{\uparrow }n_{\downarrow }|d_{\uparrow }^{\dagger }}\rangle \rangle = 1+\left\{ {\sum _k|\mathcal {V}_{k,S}|^2u^*_kv_k\left( \frac{1}{\omega -E_k}-\frac{1}{\omega +E_k}\right) }\right\} \langle \langle {d_{\downarrow }^{\dagger }|d_{\uparrow }^{\dagger }}\rangle \rangle \\ +\left\{ \sum _k\frac{|\mathcal {V}_{k,N}|^2}{\omega -\epsilon _{k,N}}+\sum _k|\mathcal {V}_{k,S}|^2\left( \frac{|u_k|^2}{\omega -E_k}+\frac{|v_k|^2}{\omega +E_k}\right) \right\} \langle \langle {d_{\uparrow }|d_{\uparrow }^{\dagger }}\rangle \rangle \end{aligned}$$
$$\begin{aligned} \left\{ \frac{\omega +\epsilon _d+U}{\langle {n_{\uparrow }}\rangle }\right\} \langle \langle {d_{\downarrow }^{\dagger }n_{\uparrow }|d_{\uparrow }^{\dagger }}\rangle \rangle = \left\{ {\sum _k|\mathcal {V}_{k,S}|^2u_kv^*_k\left( \frac{1}{\omega -E_k}-\frac{1}{\omega +E_k}\right) }\right\} \langle \langle {d_{\uparrow }|d_{\uparrow }^{\dagger }}\rangle \rangle \\ +\left\{ \sum _k\frac{|\mathcal {V}_{k,N}|^2}{\omega +\epsilon _{k,N}}+\sum _k|\mathcal {V}_{k,S}|^2\left( \frac{|u_k|^2}{\omega -E_k}+\frac{|v_k|^2}{\omega +E_k}\right) \right\} \langle \langle {d_{\downarrow }^{\dagger }|d_{\uparrow }^{\dagger }}\rangle \rangle \end{aligned}$$

The terms with summations over k appearing in above equations can be simplified by replacing \(\sum _k \rightarrow \int {\rho (\epsilon )d\epsilon }\) and then solving these expressions using the complex contour integration in the wide-band limit. Finally after solving above coupled equations, we arrive at the expression for the retarded Green’s function of electron with spin \(\sigma =\uparrow\) and off-diagonal superconducting pairing correlation on the QD, i.e.,

$$\begin{aligned} G_{d,11}^{r}(\omega ) =\frac{\alpha _1(\omega )}{\omega -\epsilon _d+\left( \frac{i\Gamma _N}{2}+\beta (\omega )\right) \alpha _1(\omega )-\frac{\alpha _1(\omega )\,\alpha _2(\omega )\left( \frac{\Delta }{|\omega |}\beta (\omega )\right) ^2}{\omega +\epsilon _d+\left( \frac{i\Gamma _N}{2}+\beta (\omega )\right) \alpha _2(\omega )}} \end{aligned}$$
$$\begin{aligned} G_{d,21}^{r}(\omega ) =\frac{\alpha _2(\omega )\left( \frac{\Delta }{|\omega |}\beta (\omega )\right) }{\omega +\epsilon _d+\left( \frac{i\Gamma _N}{2}+\beta (\omega )\right) \alpha _2(\omega )}\times G_{d,11}^{r}(\omega ) \end{aligned}$$

where

$${\alpha _1(\omega )=1+\frac{U\langle {n_{\downarrow }}\rangle }{\omega -\epsilon _d-U}},\quad {\alpha _2(\omega )=1+\frac{U\langle {n_{\uparrow }}\rangle }{\omega +\epsilon _d+U}}$$

and

$$\begin{aligned} \beta (\omega )=\frac{\Gamma _S}{2}\rho _S(\omega )=\frac{\Gamma _S}{2}\frac{\omega }{\sqrt{\Delta ^2-\omega ^2}}\theta (\Delta -|\omega |)+\frac{i\Gamma _S}{2}\frac{|\omega |}{\sqrt{\omega ^2-\Delta ^2}}\theta (|\omega |-\Delta ) \end{aligned}$$

where \(\rho _S(\omega )\) is the modified BCS density of states, with the real part accounting for the Andreev bound states within the superconducting gap. The other matrix elements is given by \(G_{d,22}^{r}(\omega )=-G_{d,11}^{r}(-\omega )^{*}\) and \(G_{d,12}^{r}(\omega )=G_{d,21}^{r}(-\omega )^{*}\). These retarded Green’s functions allow us to calculate the advanced and lesser/greater Green’s functions and eventually the thermoelectric transport properties.

The average occupancy on the quantum dot (\(\langle {n_{\uparrow }}\rangle\)=\(\langle {n_{\downarrow }}\rangle\) for non-magnetic system) is calculated using the self-consistent integral equation of the form

$$\begin{aligned} \langle {n_{\sigma }}\rangle =\frac{-i}{2\pi }\int ^{\infty }_{-\infty }G^{<}_{d,11}(\omega ) d\omega \end{aligned}$$

where the lesser Green’s function \(G^{<}_{d}\) obeys the Keldysh equation [38, 39]

$$\begin{aligned} \mathbf{{G}}^{<}_{d\sigma }(\omega )=\mathbf{{G}}^{r}_{d\sigma }(\omega )\mathbf{{\Sigma }}^{<}(\omega )\mathbf{{G}}^{a}_{d\sigma }(\omega ). \end{aligned}$$

The advanced Green’s function matrix is \(\mathbf{{G}}^{a}_{d\sigma }(\omega )=\left[ \mathbf{{G}}^{r}_{d\sigma }(\omega )\right] ^{\dagger }\) and the lesser self-energy matrix is obtained using Ng ansatz [38, 46], i.e.,

$$\begin{aligned} \mathbf{{\Sigma }}^{<}(\omega )= -\sum _{\alpha \in N,S}\left[ \mathbf{{\Sigma }}^{r}_{\alpha }-\mathbf{{\Sigma }}^{a}_{\alpha }\right] f_{\alpha }(\omega -\mu _{\alpha }) \end{aligned}$$

This ansatz satisfies the continuity equation in steady state, allowing us to derive the lesser Green’s function to examine the transport properties.

Now using retarded and advanced self-energy, we get

$$\begin{aligned} \mathbf{{\Sigma }}^{<}(\omega )= \begin{pmatrix} \;\Sigma ^{<}_{11}(\omega ) &{}\quad \Sigma ^{<}_{12}(\omega )\;\\ \;\Sigma ^{<}_{21}(\omega ) &{}\quad \Sigma ^{<}_{22}(\omega )\; \end{pmatrix} \end{aligned}$$

with

$$\begin{aligned} \Sigma ^{<}_{11}(\omega )&= -i\Gamma _{N}f_N(\omega -\mu _N)-\frac{i\Gamma _S|\omega |}{\sqrt{\omega ^2-\Delta ^2}} \theta (|\omega |-\Delta )f_S(\omega -\mu _S)\\ \Sigma ^{<}_{12}(\omega )&= \Sigma ^{<}_{21}(\omega )=\frac{i\Gamma _{S}\Delta }{\sqrt{\omega ^2-\Delta ^2}}\theta (|\omega |-\Delta )f_S(\omega -\mu _S)\\ \Sigma ^{<}_{22}(\omega )&= -i\Gamma _{N}f_N(\omega +\mu _N)-\frac{i\Gamma _S|\omega |}{\sqrt{\omega ^2-\Delta ^2}} \theta (|\omega |-\Delta )f_S(\omega -\mu _S) \end{aligned}$$

Now, multiplying matrices in the expression of \(\mathbf{{G}}^{<}_{d\sigma }(\omega )\), we get the lesser Green’s function for electrons on the QD as

$$\begin{aligned} \begin{aligned} G^{<}_{d,11}(\omega )&= i\Gamma _{N}f_N(\omega -\mu _N)|G_{d,11}^{r}(\omega )|^2+ i\Gamma _{N}f_N(\omega +\mu _N)|G_{d,12}^{r}(\omega )|^2+\\&\frac{i\Gamma _S|\omega |}{\sqrt{\omega ^2-\Delta _2}}\;\theta (|\omega |-\Delta )f_S(\omega -\mu _S)\times \\&\left[ |G_{d,11}^{r}(\omega )|^2+|G_{d,12}^{r}(\omega )|^2 -\frac{2\Delta }{|\omega |} Re\left( G_{d,11}^{r}(\omega ).G_{d,12}^{a}(\omega )\right) \right] \end{aligned} \end{aligned}$$

where \(f_{\alpha \in N,S}(\omega \mp \mu _{\alpha })=\left[ {exp((\omega \mp \mu _{\alpha })/k_BT_{\alpha })+1}\right] ^{-1}\) is the Fermi-Dirac distribution function of reservoirs with temperature \(T_{\alpha }\) and chemical potential \(\pm \mu _{\alpha }\) (measured from Fermi level \(\mu _f=0\)).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Singh, A. Seebeck Power Generation and Peltier Cooling in a Normal Metal-Quantum Dot-Superconductor Nanodevice. J Low Temp Phys 214, 344–359 (2024). https://doi.org/10.1007/s10909-024-03047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-024-03047-8

Keywords

Navigation