Skip to main content

Advertisement

Log in

Low-temperature enhancement of the thermoelectric Seebeck coefficient in gated 2D semiconductor nanomembranes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

An increasing need for effective thermal sensors, together with dwindling energy resources, have created renewed interests in thermoelectric (TE), or solid-state, energy conversion and refrigeration using semiconductor based nanostructures. Effective control of electron and phonon transport due to confinement, interface, and quantum effects has made nanostructures a good way to achieve more efficient thermoelectric energy conversion. Theoretically, a narrow delta-function shaped transport distribution function (TDF) is believed to provide the highest Seebeck coefficient, but has proven difficult to achieve in practice. We propose a novel approach to achieving a narrow window-shaped TDF through a combination of a step-like 2-dimensional density-of-states (DOS) and inelastic optical phonon scattering. A shift in the onset of scattering with respect to the step-like DOS creates a TDF which peaks over a narrow band of energies. We perform a numerical simulation of carrier transport in silicon nanoribbons based on numerically solving the coupled Schrödinger-Poisson equations together with transport in the semi-classical Boltzmann formalism. Our calculations confirm that inelastic scattering of electrons, combined with the step-like DOS in 2-dimensional nanostructures leads to the formation of a narrow window-function shaped TDF and results in enhancement of Seebeck coefficient beyond what was already achieved through confinement alone. A further analysis on maximizing this enhancement by tuning the material properties is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vineis, C.J., Shakouri, A., Majumdar, A., Kanatzidis, M.G.: Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22(36), 3970–3980 (2010)

    Article  Google Scholar 

  2. DiSalvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703–706 (1999)

    Article  Google Scholar 

  3. Majumdar, A.: Thermoelectric devices: helping chips to keep their cool. Nat. Nanotechnol. 4, 214–215 (2009)

    Article  Google Scholar 

  4. Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4, 235–238 (2009)

    Article  Google Scholar 

  5. Hochbaum, A., Chen, R., Delgado, R., Liang, W., Garnett, E., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008)

    Article  Google Scholar 

  6. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu III, J., Goddard III, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008)

    Article  Google Scholar 

  7. Huang, M., Ritz, C.S., Novakovic, B., Yu, D., Zhang, Y., Flack, F., Savage, D.E., Evans, P.G., Knezevic, I., Liu, F., Lagally, M.G.: Mechano-electronic superlattices in silicon nanoribbons. ACS Nano 3, 721–727 (2009)

    Article  Google Scholar 

  8. Ramayya, E.B., Maurer, L.N., Davoody, A.H., Knezevic, I.: Thermoelectric properties of ultrathin silicon nanowires. Phys. Rev. B 86, 115328 (2012)

    Article  Google Scholar 

  9. Goldsmid, H.: Electronic Refrigeration. Pion, London (1986)

    Google Scholar 

  10. Chen, R., Hochbaum, A.I., Murphy, P., Moore, J., Yang, P., Majumdar, A.: Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101, 105501 (2008)

  11. Markussen, T., Jauho, A.-P., Brandbyge, M.: Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics. Phys. Rev. Lett. 103, 055502 (2009)

    Article  Google Scholar 

  12. Shi, L.: Thermal and thermoelectric transport in nanostructures and low-dimensional systems. Nanoscale Microscale Thermophys. Eng. 16(2), 79–116 (2012)

    Article  Google Scholar 

  13. Zhou, J., Yang, R., Chen, G., Dresselhaus, M.S.: Optimal bandwidth for high efficiency thermoelectrics. Phys. Rev. Lett. 107, 226601 (2011)

    Article  Google Scholar 

  14. Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. 93(15), 7436–7439 (1996)

    Article  Google Scholar 

  15. Kim, R., Datta, S., Lundstrom, M.S.: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105(3), 034506 (2009)

    Article  Google Scholar 

  16. Hicks, L.D., Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631–16634 (1993)

    Article  Google Scholar 

  17. Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437 (1982)

    Article  Google Scholar 

  18. Wickramaratne, D., Zahid, F., Lake, R.K.: Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. 140(12), 124710 (2014)

    Article  Google Scholar 

  19. Aksamija, Z., Knezevic, I.: Thermoelectric properties of silicon nanostructures. J. Comput. Electron. 9, 173 (2010)

    Article  Google Scholar 

  20. Ryu, H., Aksamija, Z., Paskiewicz, D., Scott, S., Lagally, M., Knezevic, I., Eriksson, M.: Quantitative determination of contributions to the thermoelectric power factor in si nanostructures. Phys. Rev. Lett. 105, 256601 (2010)

    Article  Google Scholar 

  21. Shakouri, A.: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41(1), 399–431 (2011)

    Article  Google Scholar 

  22. Ziman, J.: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press Inc., Oxford (1960)

    MATH  Google Scholar 

  23. Knezevic, I., Ramayya, E.B., Vasileska, D., Goodnick, S.M.: Diffusive transport in quasi-2d and quasi-1d electron systems. J. Comput. Theor. Nanosci. 6(8), 1725–1753 (2009)

    Article  Google Scholar 

  24. Fischetti, M.V., Laux, S.E.: Monte carlo study of electron transport in silicon inversion layers. Phys. Rev. B 48, 2244–2274 (1993)

    Article  Google Scholar 

  25. Ramayya, E.B., Vasileska, D., Goodnick, S.M., Knezevic, I.: Electron transport in silicon nanowires: the role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008)

    Article  Google Scholar 

  26. Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: Six-band k \(\cdot \) p calculation of the hole mobility in silicon inversion layers: dependence on surface orientation, strain, and silicon thickness. J. Appl. Phys. 94(2), 1079–1095 (2003)

    Article  Google Scholar 

  27. Ridley, B.K.: Quantum Processes in Semiconductors. Oxford Science Publications, Oxford (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Aksamija.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kommini, A., Aksamija, Z. Low-temperature enhancement of the thermoelectric Seebeck coefficient in gated 2D semiconductor nanomembranes. J Comput Electron 15, 27–33 (2016). https://doi.org/10.1007/s10825-015-0782-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0782-1

Keywords

Navigation