Skip to main content
Log in

Heat current characteristics in nanojunctions with superconducting baths

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

As a fundamental requisite for thermotronics, controlling heat flow has been a longstanding quest in solid state physics. Recently, there has been a lot of interest in nanoscale hybrid systems as possible candidates for thermal devices. In this context, we study the heat current in the simplest hybrid device of a two level system weakly coupled to two heat baths. We use the reduced density matrix approach together with a simple Born-Markov approximation to calculate the heat current in the steady state. We consider different kinds of reservoirs and show that the nature of the reservoir plays a very important role in determining the thermal characteristics of the device. In particular, we investigate the effectiveness of a conventional superconductor as a reservoir with regard to manipulating the heat current. In the emergent temperature characteristics, we find that superconductivity in the reservoirs leads to enhanced thermal currents and that the superconducting phase transition is clearly visible in the heat current. We observe negative differential thermal conductance and a pronounced rectification of the heat current, making this a good building block for a quantum thermal diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005)

    Article  ADS  Google Scholar 

  2. D. Venturelli, R. Fazio, V. Giovannetti, Phys. Rev. Lett. 110, 256801 (2013)

    Article  ADS  Google Scholar 

  3. N.A. Roberts, D.G. Walker, Int. J. Thermal Sci. 50, 648 (2011)

    Article  Google Scholar 

  4. L. Wang, B. Li, Phys. World 21, 27 (2008)

    Google Scholar 

  5. M. Terraneo, M. Peyrard, G. Casati, Phys. Rev. Lett. 88, 094302 (2002)

    Article  ADS  Google Scholar 

  6. B. Li, L. Wang, G. Casati, Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  7. C.W. Chang, D. Okawa, A. Majumdar, A. Zettl, Science 314, 1121 (2006)

    Article  ADS  Google Scholar 

  8. R. Scheibner, M. König, D. Reuter, A.A. Wieck, C. Gould, H. Buhmann, L.W. Molenkamp, New J. Phys. 10, 083016 (2008)

    Article  ADS  Google Scholar 

  9. O.P. Saira, M. Meschke, F. Giazotto, A.M. Savin, M. Möttönen, J.P. Pekola, Phys. Rev. Lett. 99, 027203 (2007)

    Article  ADS  Google Scholar 

  10. I. Sinaysky, F. Petruccione, D. Burgarth, Phys. Rev. A 78, 062301 (2008)

    Article  ADS  Google Scholar 

  11. L. Quiroga, F.J. Rodríguez, M.E. Ramirez, R. París, Phys. Rev. A 75, 032308 (2007)

    Article  ADS  Google Scholar 

  12. T. Prosen, I. Pižorn, Phys. Rev. Lett. 101, 105701 (2008)

    Article  ADS  Google Scholar 

  13. L.A. Wu, C.X. Yu, D. Segal, Phys. Rev. E 80, 041103 (2009)

    Article  ADS  Google Scholar 

  14. L.A. Wu, D. Segal, Phys. Rev. Lett. 102, 095503 (2009)

    Article  ADS  Google Scholar 

  15. D. Segal, A. Nitzan, J. Chem. Phys. 122, 194704 (2005)

    Article  ADS  Google Scholar 

  16. L.A. Wu, D. Segal, J. Phys. A 42, 025302 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  17. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007)

  18. U. Weiss, Quantum Dissipative Systems (World Scientific Publishing Company, 2008)

  19. S. Camalet, R. Chitra, Phys. Rev. B 75, 094434 (2007)

    Article  ADS  Google Scholar 

  20. J. Restrepo, S. Camalet, R. Chitra, Europhys. Lett. 101, 50005 (2013)

    Article  ADS  Google Scholar 

  21. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, 1996)

  22. H.P. Breuer, D. Burgarth, F. Petruccione, Phys. Rev. B 70, 045323 (2004)

    Article  ADS  Google Scholar 

  23. J. Restrepo, R. Chitra, S. Camalet, E. Dupont, Phys. Rev. B 84, 245109 (2011)

    Article  ADS  Google Scholar 

  24. H. Wichterich, M.J. Henrich, H.P. Breuer, J. Gemmer, M. Michel, Phys. Rev. E 76, 031115 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  25. L.A. Wu, D. Segal, Phys. Rev. E 83, 051114 (2011)

    Article  ADS  Google Scholar 

  26. B. Li, L. Wang, G. Casati, Appl. Phys. Lett. 88, 143501 (2006)

    Article  ADS  Google Scholar 

  27. J. Hu, Y. Wang, A. Vallabhaneni, X. Ruan, Y.P. Chen, Appl. Phys. Lett. 99, 113101 (2011)

    Article  ADS  Google Scholar 

  28. T. Ruokola, T. Ojanen, A.P. Jauho, Phys. Rev. B 79, 144306 (2009)

    Article  ADS  Google Scholar 

  29. D.M.T. Kuo, Y.C. Chang, Phys. Rev. B 81, 205321 (2010)

    Article  ADS  Google Scholar 

  30. J. Restrepo, Ph.D. thesis, Université Pierre et Marie Curie, 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chitra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oettinger, D., Chitra, R. & Restrepo, J. Heat current characteristics in nanojunctions with superconducting baths. Eur. Phys. J. B 87, 224 (2014). https://doi.org/10.1140/epjb/e2014-50310-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50310-3

Keywords

Navigation