Skip to main content
Log in

Magnetization Plateaus at Low Temperature in a Triangular Spin Tube

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We studied some magnetic behaviors of the Ising model in a triangular spin tube using the effective field theory (EFT) with correlations. We examined the effects of the exchange anisotropy \(J^{\prime} = \frac{{J_{ \bot } }}{{J_{//} }}\), and temperature T on the magnetic properties of the spin ½ Ising model in a triangular spin tube, particularly for isotherm magnetization, spontaneous magnetization, and magnetic susceptibility. We investigated the magnetic properties of the triangular spin ½ tube in detail. At low temperature, magnetization curves of a triangular spin ½ tube of the Ising model with the intra- triangular J┴, and inter-triangular J// interaction exchange are examined within the behavior magnetic. It is shown that the developed model satisfactorily describes all pronounced features of the low-temperature magnetization process and the magneto-thermodynamics such as abrupt changes of the isothermal magnetization curves, a giant magnetocaloric effect. Among the most notable features of zero-temperature magnetization curves, one could mention fractional magnetization plateaus, quantum spin liquids, and macroscopic magnetization jumps, which can be found first of all in frustrated quantum Heisenberg spin models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Farchakh and M. El Hafidi, in J. Supercond. Nov. Magn. (2017), DOI https://doi.org/10.1007/s10948-017-4342-8 and references therein

  2. L. Balents, Nature 464, 199–208 (2010). https://doi.org/10.1038/nature08917

    Article  ADS  Google Scholar 

  3. D. Cabra and P. Pujol, Quantum Magnetism (Lecture Notes in Physics vol 645) ed Schollwock U, Richter J, Farnell D and Bishop R (Springer Berlin Heidelberg) (2004) pp 253–305 ISBN 978-3-540-21422-9 doi: https://doi.org/10.1007/BFb0119596

  4. S.E. Kruger, J. Richter, Influence of quantum fluctuations on zero-temperature phase transitions between collinear and noncollinear states in frustrated spin systems. Phys. Rev. B 64, 024433 (2001). https://doi.org/10.1103/PhysRevB.64.024433

    Article  ADS  Google Scholar 

  5. M. Sato, T. Sakai, Phys. Rev. B 75, 014411 (2007)

    Article  ADS  Google Scholar 

  6. A. Lüscher, R.M. Noack, G. Misguich, V.N. Kotov, F. Mila, Phys. Rev. B 70, 060405 (2004)

    Article  ADS  Google Scholar 

  7. M. Sato, Phys. Rev. B 75, 174407 (2007)

    Article  ADS  Google Scholar 

  8. T. Sakai, M. Sato, K. Okunishi, Y. Otsuka, K. Okamoto, C. Itoi, Phys. Rev. B 78, 184415 (2008)

    Article  ADS  Google Scholar 

  9. H. Manaka, T. Etoh, Y. Honda, N. Iwashita, K. Ogata, N. Terada, T. Hisamatsu, M. Ito, Y. Narumi, A. Kondo, K. Kindo, Y. Miura, J. Phys. Soc. Japan 80, 084714 (2011)

    Article  ADS  Google Scholar 

  10. M. Hagihala, S. Hayashida, M. Avdeev, H. Manaka, H. Kikuchi, T. Masuda, npj Quantum Materials 4, 14 (2019)

    Article  ADS  Google Scholar 

  11. M. Ochiai, K. Seki, K. Okunishi, J. Phys. Soc. Japan 86, 114701 (2017)

    Article  ADS  Google Scholar 

  12. K. Seki, K. Okunishi, Phys. Rev. B 91, 224403 (2015)

    Article  ADS  Google Scholar 

  13. J. Schnack, H. Nojiri, P. Kogerler, G.J.T. Cooper, L. Cronin, Phys. Rev. B 70, 174420 (2004)

    Article  ADS  Google Scholar 

  14. H. Manaka, Y. Hirai, Y. Hachigo, M. Mitsunaga, M. Ito, N. Terada, J. Phys. Soc. Japan 78, 093701 (2009)

    Article  ADS  Google Scholar 

  15. P. Millet, J. Henry, F. Mila, J. Galy, J. Solid State Chem. 147, 676 (1999)

    Article  ADS  Google Scholar 

  16. R. Hanmura, T. Kaneyoshi, J. Phys. C: Solid State Phys. 12, 3979 (1979)

    Article  ADS  Google Scholar 

  17. T. Kaneyoshi, J.W. Tucker, M. Jascur, Physica A 186, 495 (1992)

    Article  ADS  Google Scholar 

  18. T. Kaneyoshi, Correlated-effective-field treatment of spin-one Ising models. Physica A 164(3), 730–750 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  19. F.D.M. Haldane, Phys. Lett. A 93, 464 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  20. F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)

    Article  ADS  Google Scholar 

  22. A. Honecker, J. Schulenburg, J. Richter, J. Phys.: Condens. Matter 16, S749 (2004)

    ADS  Google Scholar 

  23. B.-Z. Mi, H.-Y. Wang, Y.-S. Zhou, J. Magn. Magn. Mater. 322, 952 (2010)

    Article  ADS  Google Scholar 

  24. B.-Z. Mi, H.-Y. Wang, J. Magn. Magn. Mater. 390, 132–136 (2015)

    Article  ADS  Google Scholar 

  25. J. Strecka, K. Karl’ova, O. Krupnitska, Physica E: Low-dimensional Systems and Nanostructures 133, 114805 (2021)

    Article  Google Scholar 

  26. Qi. Zhang, G. Wei, Z. Xin, Y. Liang, J. Mag. Mag. Mat. 280, 14 (2004)

    Article  ADS  Google Scholar 

  27. Y. Ye, B. Geng, Magnetic nanotubes: synthesis, properties, and applications. Critical Rev. Solid State Mater. Sci. 37(2), 75–93 (2012). https://doi.org/10.1080/10408436.2011.613491

    Article  ADS  Google Scholar 

  28. R. Mach-Batlle, C. Navau, A. Sanchez, Invisible magnetic sensors. Appl. Phys. Lett. 112(16), 162406 (2018). https://doi.org/10.1063/1.5023565

    Article  ADS  Google Scholar 

  29. M. Oshikawa, M. Yamanaka, I. Affleck, Magnetization plateaus in spin chains: Haldane gap for half-integer spins. Phys. Rev. Lett. 78, 1984–1987 (1997)

    Article  ADS  Google Scholar 

  30. X. Plat, S. Capponi, P. Pujol, Combined analytical and numerical approach to magnetization plateaux in one-dimensional spin tube antiferromagnets. Phys. Rev. B, Condensed Matter. 85(17), 174423 (2012). https://doi.org/10.1103/PhysRevB.85.174423

    Article  ADS  Google Scholar 

  31. M. Takigawa, F. Mila,. Magnetization Plateaus. Springer Series in Solid-State Sciences, (2010) 241–267. doi: https://doi.org/10.1007/978-3-642-10589-0_10

  32. A. Farchakh, A. Boubekri, Z. Elmaddahi, M. El Hafidi, H. Bioud, Magnetization plateaus in a frustrated spin ½ four-leg nanotube. Comput. Condensed Matter 23, e00457 (2020). https://doi.org/10.1016/j.cocom.2020.e00457]

    Article  Google Scholar 

  33. K. Binder, A.P. Young, Disordered and Frustrated Spin Systems (Wiley, New York, 2007). https://doi.org/10.1002/9780470022184.hmm116

    Book  Google Scholar 

  34. A. Honecker, F. Mila, M. Troyer, Magnetization plateaux and jumps in a class of frustrated ladders: A simple route to a complex behaviour. Eur. Phys. J. B 15, 227 (2000). https://doi.org/10.1007/s100510051120

    Article  ADS  Google Scholar 

  35. R.C. Alécio, J. Strecka, M.L. Lyra, J. Magn. Magn. Mater. 4(451), 218 (2018). https://doi.org/10.1016/j.jmmm.2017.11.024

    Article  ADS  Google Scholar 

  36. J. Wen, S.-L. Yu, S. Li, W. Yu, J.-X. Li, Experimental identification of quantum spin liquids. npj Quantum Mater. 4, 12 (2019) and references therein. doi: https://doi.org/10.1038/s41535-019-0151-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeslam Farchakh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

The coefficients \(P_{0}\),\(P_{1}\),\(P_{2}\),\(P_{3}\) and \(P_{4}\) used in Eq. (10) are given by:

$$\begin{gathered} P_{0} = \tanh (2(A + B) + C) + \tanh ( - 2(A + B) + C) + \tanh (2(A - B) + C) + \tanh ( - 2(A - B) + C) + 2\tanh (2A + C) \hfill \\ + 2\tanh ( - 2A + C) + 2\tanh (2B + C) + 2\tanh ( - 2B + C) + 4\tanh (C) \hfill \\ \end{gathered}$$
$$P_{1} = 4\tanh (2(A + B) + C) - 4\tanh ( - 2(A + B) + C) + 4\tanh (2A + C) - 4\tanh ( - 2A + C) + 4\tanh (2B + C) - 4\tanh ( - 2B + C)$$
$$P_{2} = 6\tanh (2(A + B) + C) + 6\tanh ( - 2(A + B) + C) - 2\tanh (2(A - B) + C) - 2\tanh ( - 2(A - B) + C) - 8\tanh (C)$$
$$P_{3} = 2\tanh (2(A + B) + C) - 2\tanh ( - 2(A + B) + C) - 2\tanh (2A + C) + 2\tanh ( - 2A + C) - 2\tanh (2B + C) + 2\tanh ( - 2B + C)$$
$$\begin{gathered} P_{4} = \tanh (2(A + B) + C) + \tanh ( - 2(A + B) + C) + \tanh (2(A - B) + C) + \tanh ( - 2(A - B) + C) - 2\tanh (2A + C) - 2\tanh ( - 2A + C) \hfill \\ - 2\tanh (2B + C) - 2\tanh ( - 2B + C) + 4\tanh (C), \hfill \\ \end{gathered}$$

with:

$$A = \frac{{J_{ \bot } }}{2}$$
$$B = \frac{{J_{//} }}{2}$$
$$C = \frac{\beta h}{2}$$
$$\beta = \frac{1}{{k_{B} T}}$$

where \(k_{B}\) is the Boltzmann constant and T is the absolute temperature.

The coefficients \(\left( {\frac{{\partial P_{0} }}{\partial h}} \right)\),\(\left( {\frac{{\partial P_{1} }}{\partial h}} \right)\),\(\left( {\frac{{\partial P_{2} }}{\partial h}} \right)\),\(\left( {\frac{{\partial P_{3} }}{\partial h}} \right)\) and \(\left( {\frac{{\partial P_{4} }}{\partial h}} \right)\) used in Eq. (13) are given by the following:

$$\left( {\frac{{\partial P_{0} }}{\partial h}} \right) = \frac{\beta }{2}\left( {\frac{2}{{{\text{Cosh}}^{2} \left( {2\left( {A + B} \right)} \right)}} + \frac{2}{{{\text{Cosh}}^{2} \left( {2\left( {A - B} \right)} \right)}} + \frac{4}{{{\text{Cosh}}^{2} \left( {2A} \right)}} + \frac{4}{{{\text{Cosh}}^{2} \left( {2B} \right)}}} \right)$$
$$\left( {\frac{{\partial P_{1} }}{\partial h}} \right) = 0$$
$$\left( {\frac{{\partial P_{2} }}{\partial h}} \right) = \frac{\beta }{2}\left( {\frac{12}{{{\text{Cosh}}^{2} \left( {2\left( {A + B} \right)} \right)}} - \frac{4}{{{\text{Cosh}}^{2} \left( {2\left( {A - B} \right)} \right)}}} \right)$$
$$\left( {\frac{{\partial P_{3} }}{\partial h}} \right) = 0$$
$$\left( {\frac{{\partial P_{4} }}{\partial h}} \right) = \frac{\beta }{2}\left( {\frac{2}{{{\text{Cosh}}^{2} \left( {2\left( {A + B} \right)} \right)}} + \frac{2}{{{\text{Cosh}}^{2} \left( {2\left( {A - B} \right)} \right)}} - \frac{4}{{{\text{Cosh}}^{2} \left( {2A} \right)}} - \frac{4}{{{\text{Cosh}}^{2} \left( {2B} \right)}}} \right)$$

The coefficients \(T_{0}\),\(T_{1}\),\(T_{2}\),\(T_{3}\) and \(T_{4}\) used in Eq. (17) are given by:

$$T_{0} = \tanh (2(A + B) + C) - \tanh ( - 2(A + B) + C) + \tanh (2(A - B) + C) - \tanh ( - 2(A - B) + C) + 2\tanh (2A + C) - 2\tanh ( - 2A + C)$$
$$T_{1} = 8\tanh (2(A + B) + C) + 8\tanh ( - 2(A - B) + C) + 8\tanh (2A + C) + 8\tanh ( - 2A + C)$$
$$T_{2} = 24\tanh (2(A + B) + C) + 8\tanh ( - 2(A + B) + C) - 8\tanh (2(A - B) + C) - 24\tanh ( - 2(A - B) + C)$$
$$T_{3} = 32\tanh (2(A + B) + C) + 32\tanh ( - 2(A - B) + C) - 32\tanh (2A + C) - 32\tanh ( - 2A + C)$$
$$\begin{gathered} T_{4} = 16\tanh (2(A + B) + C) - 16\tanh ( - 2(A + B) + C) + 16\tanh (2(A - B) + C) - 16\tanh ( - 2(A - B) + C) - 32\tanh (2A + C) \hfill \\ + 32\tanh ( - 2A + C) \hfill \\ \end{gathered}$$

The coefficients \(T^{\prime}_{0}\),\(T^{\prime}_{1}\),\(T^{\prime}_{2}\),\(T^{\prime}_{3}\) and \(T^{\prime}_{4}\) used in Eq. (18) are given by the following:

$$T_{0}^{^{\prime}} = \tanh (2(A + B) + C) + \tanh ( - 2(A + B) + C) - \tanh (2(A - B) + C) - \tanh ( - 2(A - B) + C) + 2\tanh (2B + C) - 2\tanh ( - 2B + C)$$
$$T_{1}^{^{\prime}} = 8\tanh (2(A + B) + C) + 8\tanh ( - 2(A - B) + C) + 8\tanh (2B + C) + 8\tanh ( - 2B + C)$$
$$T_{2}^{^{\prime}} = 24\tanh (2(A + B) + C) - 8\tanh ( - 2(A + B) + C) + 8\tanh (2(A - B) + C) - 24\tanh ( - 2(A - B) + C)$$
$$T_{3}^{^{\prime}} = 32\tanh (2(A + B) + C) + 32\tanh ( - 2(A - B) + C) - 32\tanh (2B + C) - 32\tanh ( - 2B + C)$$
$$\begin{gathered} T_{4}^{^{\prime}} = 16\tanh (2(A + B) + C) + 16\tanh ( - 2(A + B) + C) - 16\tanh (2(A - B) + C) - 16\tanh ( - 2(A - B) + C) - 32\tanh (2B + C) \hfill \\ + 32\tanh ( - 2B + C) \hfill \\ \end{gathered}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farchakh, A., Boubekri, A. & El Hafidi, M. Magnetization Plateaus at Low Temperature in a Triangular Spin Tube. J Low Temp Phys 206, 131–147 (2022). https://doi.org/10.1007/s10909-021-02644-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02644-1

Keywords

Navigation