Skip to main content

Advertisement

Log in

Remarks on Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In a recent paper published in this Journal, Khordad and Sedehi (J Low Temp Phys 190(3):200, 2018) have studied the thermodynamic properties of a GaAs double ring-shaped quantum dot under external magnetic and electric fields. In that meritorious research the energy of the system was obtained by solving the Schrödinger equation. The radial equation was mapped into a confluent hypergeometric differential equation and the differential equation associated to z coordinate was mapped into a biconfluent Heun differential equation. In this paper, it is pointed out a misleading treatment on the solution of the biconfluent Heun equation. It is shown that the energy \(E_{z}\) can not be labeled with \(n_{z}\) and this fact jeopardizes the results of this system. We calculate the partition function with the correct energy spectrum and recalculate the specific heat and entropy as a function of low and high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M.A. Kastner, Rev. Mod. Phys. 64, 849 (1992). https://doi.org/10.1103/RevModPhys.64.849

    Article  ADS  Google Scholar 

  2. A. Zrenner, J. Chem. Phys. 112(18), 7790 (2000). https://doi.org/10.1063/1.481384

    Article  ADS  Google Scholar 

  3. R. Mirin, A. Gossard, J. Bowers, Elec. Lett. 32(18), 1732 (1996)

    Article  ADS  Google Scholar 

  4. M. El Assaid, M. El Aydi, M. El Feddi, F. Dujardin, Cent. Eur. J. Phys. 6(1), 97 (2008). https://doi.org/10.2478/s11534-008-0070-9

    Article  Google Scholar 

  5. B. Boyacioglu, A. Chatterjee, J. Appl. Phys. 112(8), 083514 (2012). https://doi.org/10.1063/1.4759350

    Article  ADS  Google Scholar 

  6. D.S. Chuu, C.M. Hsiao, W.N. Mei, Phys. Rev. B 46, 3898 (1992). https://doi.org/10.1103/PhysRevB.46.3898

    Article  ADS  Google Scholar 

  7. G.S. Pearson, D.A. Faux, J. Appl. Phys. 88(2), 730 (2000). https://doi.org/10.1063/1.373729

    Article  ADS  Google Scholar 

  8. M. Carpio-Bernido, C.C. Bernido, Phys. Lett. A 134(7), 395 (1989). https://doi.org/10.1016/0375-9601(89)90357-5

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Khordad, H.R.R. Sedehi, J. Low Temp. Phys. 190(3), 200 (2018). https://doi.org/10.1007/s10909-017-1831-x

    Article  ADS  Google Scholar 

  10. R. Khordad, Superlattices Microstruct. 110, 146 (2017). https://doi.org/10.1016/j.spmi.2017.08.050

    Article  ADS  Google Scholar 

  11. N.F. Johnson, J. Phys.: Condens. Matter 7(6), 965 (1995). https://doi.org/10.1088/0953-8984/7/6/005

    Article  ADS  Google Scholar 

  12. D. Bimberg, N. Ledentsov, J. Phys.: Condens. Matter 15(24), R1063 (2003). https://doi.org/10.1088/0953-8984/15/24/201

    Article  ADS  Google Scholar 

  13. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, S. Nakamura, Appl. Phys. Lett. 70(8), 981 (1997). https://doi.org/10.1063/1.118455

    Article  ADS  Google Scholar 

  14. S. Emin, S.P. Singh, L. Han, N. Satoh, A. Islam, Sol. Energy 85(6), 1264 (2011). https://doi.org/10.1016/j.solener.2011.02.005

    Article  ADS  Google Scholar 

  15. R.P. Raffaelle, S.L. Castro, A.F. Hepp, S.G. Bailey, Progr. Photovol.: Res. Appl. 10(6), 433 (2002). https://doi.org/10.1002/pip.452

    Article  Google Scholar 

  16. L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Science 320(5874), 356 (2008). https://doi.org/10.1126/science.1154663

    Article  ADS  Google Scholar 

  17. A. Shnirman, G. Schön, Phys. Rev. B 57, 15400 (1998). https://doi.org/10.1103/PhysRevB.57.15400

    Article  ADS  Google Scholar 

  18. S. Bandyopadhyay, Phys. Rev. B 61, 13813 (2000). https://doi.org/10.1103/PhysRevB.61.13813

    Article  ADS  Google Scholar 

  19. Y. Li, O. Voskoboynikov, C. Lee, S. Sze, Comput. Phys. Commun. 141(1), 66 (2001). https://doi.org/10.1016/S0010-4655(01)00397-6

    Article  ADS  Google Scholar 

  20. L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Rep. Prog. Phys. 64(6), 701 (2001). https://doi.org/10.1088/0034-4885/64/6/201

    Article  ADS  Google Scholar 

  21. S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1283 (2002). https://doi.org/10.1103/RevModPhys.74.1283

    Article  ADS  Google Scholar 

  22. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2002). https://doi.org/10.1103/RevModPhys.75.1

    Article  ADS  Google Scholar 

  23. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, Toronto, 1965)

    MATH  Google Scholar 

  24. B. Leaute, G. Marcilhacy, J. Phys. A: Math. Gen. 19(17), 3527 (1986)

    Article  ADS  Google Scholar 

  25. A. Ronveaux, Heun’s Differential Equations (Oxford University Press, Oxford, 1986)

    MATH  Google Scholar 

  26. L.B. Castro, Phys. Rev. C 86, 052201 (2012). https://doi.org/10.1103/PhysRevC.86.052201

    Article  ADS  Google Scholar 

  27. E.R. Figueiredo Medeiros, E.R. Bezerra de Mello, Eur. Phys. J. C 72(6), 2051 (2012). https://doi.org/10.1140/epjc/s10052-012-2051-9

    Article  ADS  Google Scholar 

  28. K. Bakke, F. Moraes, Phys. Lett. A 376(45), 2838 (2012). https://doi.org/10.1016/j.physleta.2012.09.006

    Article  ADS  Google Scholar 

  29. K. Bakke, Ann. Phys. (N. Y.) 341, 86 (2014). https://doi.org/10.1016/j.aop.2013.11.013

    Article  ADS  Google Scholar 

  30. K. Bakke, C. Furtado, Ann. Phys. (N.Y.) 355, 48 (2015). https://doi.org/10.1016/j.aop.2015.01.028

    Article  ADS  Google Scholar 

  31. F.A.C. Neto, L.B. Castro, Eur. Phys. J. C 78(6), 494 (2018). https://doi.org/10.1140/epjc/s10052-018-5847-4

    Article  ADS  Google Scholar 

  32. H. Meyer, P. Smith, J. Phys. Chem. Solids 9(3), 285 (1959). https://doi.org/10.1016/0022-3697(59)90105-2

    Article  ADS  Google Scholar 

  33. P. Kuyanov, S.A. McNamee, R.R. LaPierre, Nanotechnology 29(12), 124003 (2018). https://doi.org/10.1088/1361-6528/aaa92e

    Article  ADS  Google Scholar 

  34. S.F. Tang, S.Y. Lin, S.C. Lee, Appl. Phys. Lett. 78(17), 2428 (2001). https://doi.org/10.1063/1.1362201

    Article  ADS  Google Scholar 

  35. J.D. Mar, X.L. Xu, J.J. Baumberg, A.C. Irvine, C. Stanley, D.A. Williams, Appl. Phys. Lett. 99(3), 031102 (2011). https://doi.org/10.1063/1.3614418

    Article  ADS  Google Scholar 

  36. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, G. Abstreiter, Nature 418(6898), 612 (2002). https://doi.org/10.1038/nature00912

    Article  ADS  Google Scholar 

  37. H.M. Müller, S.E. Koonin, Phys. Rev. B 54, 14532 (1996). https://doi.org/10.1103/PhysRevB.54.14532

    Article  ADS  Google Scholar 

  38. J.D.C. Yepes, D. Amor-Quiroz, Phys. A: Stat. Mech. Appl. 548, 123871 (2020). https://doi.org/10.1016/j.physa.2019.123871

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the anonymous referee for an excellent and constructive review. L. B. Castro would like to thank Professor Dr. Antonio S. de Castro for useful comments and suggestions. This work was supported in part by means of funds provided by CNPq, Brazil, Grant No. 307932/2017-6 (PQ) and No. 422755/2018-4 (UNIVERSAL), São Paulo Research Foundation (FAPESP), Grant No. 2018/20577-4, FAPEMA, Brazil, Grant No. UNIVERSAL-01220/18 and CAPES, Brazil. Angel E. Obispo thanks to CNPq (grant 312838/2016-6) and Secti/FAPEMA (grant FAPEMA DCR-02853/16), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis B. Castro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente, A.G.J., Castro, L.B., Obispo, A.E. et al. Remarks on Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures. J Low Temp Phys 202, 372–381 (2021). https://doi.org/10.1007/s10909-020-02550-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02550-y

Keywords

Navigation