Skip to main content
Log in

Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, we study thermodynamic properties of a GaAs double ring-shaped quantum dot under external magnetic and electric fields. To this end, we first solve the Schrödinger equation and obtain the energy levels and wave functions, analytically. Then, we calculate the entropy, heat capacity, average energy and magnetic susceptibility of the quantum dot in the presence of a magnetic field using the canonical ensemble approach. According to the results, it is found that the entropy is an increasing function of temperature. At low temperatures, the entropy increases monotonically with raising the temperature for all values of the magnetic fields and it is independent of the magnetic field. But, the entropy depends on the magnetic field at high temperatures. The entropy also decreases with increasing the magnetic field. The heat capacity and magnetic susceptibility show a peak structure. The heat capacity reduces with increasing the magnetic field at low temperatures. The magnetic susceptibility shows a transition between diamagnetic and paramagnetic below for \(T<4\hbox { K}\). The transition temperature depends on the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Rotenberg, B.K. Freelon, H. Koh, A. Bostwick, K. Rossnagel, A. Schmid, S.D. Kevan, New J. Phys. 7, 114 (2005)

    Article  ADS  Google Scholar 

  2. A.M. Gil, A. Rota, T. Maroutian, B. Bartenlian, P. Beauvillain, E. Moyen, M. Hanbucken, Superlattices Microstruct. 36, 235 (2004)

    Article  ADS  Google Scholar 

  3. S. Axelsson, E.E.B. Campbell, L.M. Jonsson, J. Kinaret, S.W. Lee, Y.W. Park, M. Sveningsson, New J. Phys. 7, 245 (2005)

    Article  ADS  Google Scholar 

  4. T. Mano, T. Kuroda, K. Kuroda, K. Sakoda, J. Nanophoton. 3, 031605 (2009)

    Article  Google Scholar 

  5. S. Sarmah, A. Kumar, Indian J. Phys. 84, 1211 (2010)

    Article  ADS  Google Scholar 

  6. Z. Cheng, J. Xu, Y. Zhu, Y. Yang, F. Li, W. Chen, J. Alloys Compd. 482, L9 (2009)

    Article  Google Scholar 

  7. X. Wei, X. Chen, K. Jiang, Nanoscale Res. Lett. 16, 25 (2011)

    ADS  Google Scholar 

  8. X. Shen, S. Wu, H. Zhao, Q. Liu, Physica E 39, 133 (2007)

    Article  ADS  Google Scholar 

  9. T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai, T. Tateno, J. Kim, T. Noda, M. Kawabe, K. Sakoda, G. Kido, N. Koguchi, Nano Lett. 5, 425 (2005)

    Article  ADS  Google Scholar 

  10. T. Mano, N. Koguchi, J. Cryst. Growth 278, 108 (2005)

    Article  ADS  Google Scholar 

  11. R. Khordad, Indian J. Phys. 88, 275 (2014)

    Article  ADS  Google Scholar 

  12. C. Sikorsky, U. Merkt, Phys. Rev. Lett. 62, 2164 (1989)

    Article  ADS  Google Scholar 

  13. M. Governale, Phys. Rev. Lett. 89, 206802 (2002)

    Article  ADS  Google Scholar 

  14. K.G. Dvoyan, E.M. Kazaryan, A.A. Tshantshapanyan, J. Mater. Sci. 20, 491 (2009)

    Google Scholar 

  15. R. Khordad, H. Bahramiyan, Commun. Theor. Phys. 62, 283 (2014)

    Article  ADS  Google Scholar 

  16. R. Khordad, H. Bahramiyan, Opt. Spect. 117, 447 (2014)

    Article  ADS  Google Scholar 

  17. M. Tshipa, Indian J. Phys. 86, 807 (2012)

    Article  ADS  Google Scholar 

  18. R. Khordad, H. Bahramiyan, Physica E 66, 107 (2015)

    Article  ADS  Google Scholar 

  19. A. Gharaati, R. Khordad, Superlattices Microstruct. 48, 276 (2010)

    Article  ADS  Google Scholar 

  20. R. Rani, F. Chand, Indian J. Phys. (2017). https://doi.org/10.1007/s12648-017-1085-0

    Google Scholar 

  21. B. Boyacioglu, A. Chatterjee, J. Appl. Phys. 112, 083514 (2012)

    Article  ADS  Google Scholar 

  22. K.J. Bala, A. John Peter, C.W. Lee, Chem. Phys. 495, 42 (2017)

    Article  ADS  Google Scholar 

  23. G.H. Liu, K.X. Guo, Superlattices Microstruct. 52, 997 (2012)

    Article  ADS  Google Scholar 

  24. M.V. Carpio-Bernido, C.C. Bernido, Phys. Lett. A 134, 395 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  25. C.Y. Chen, Y. You, X.H. Wang, S.H. Dong, Phys. Lett. A 377, 1521 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. R. Khordad, Superlatt. Microstruct. 110, 146 (2017)

    Article  ADS  Google Scholar 

  27. S.N. Saravanamoorthy, A. John Peter, C.W. Lee, Chem. Phys. 483, 1 (2017)

    Article  ADS  Google Scholar 

  28. A. Bera, M. Ghosh, Physica B 515, 18 (2017)

    Article  ADS  Google Scholar 

  29. C.Y. Chen, D.S. Sun, Acta Photon. Sin. 30, 104 (2001)

    Google Scholar 

  30. W. Xie, Chem. Phys. 423, 30 (2013)

    Article  ADS  Google Scholar 

  31. D.B. Hayrapetyan, S.M. Amirkhanyan, E.M. Kazaryan, H.A. Sarkisyan, Physica E 84, 367 (2016)

    Article  ADS  Google Scholar 

  32. O. Ciftja, M.G. Faruk, Phys. Rev. B 72, 205334 (2005)

    Article  ADS  Google Scholar 

  33. C.Y. Chen, F.L. Lu, D.S. Sun, Y. You, S.H. Dong, Ann. Phys. 371, 183 (2016)

    Article  ADS  Google Scholar 

  34. A. Boda, D.S. Kumar, I.V. Sankar, A. Chatterjee, J. Mag. Mag. Mater. 418, 242 (2016)

    Article  ADS  Google Scholar 

  35. V.G. Dubrovskii, N.V. Sibirev, Phy. Rev. B 77, 035414 (2008)

    Article  ADS  Google Scholar 

  36. V. Schmidt, J.V. Wittemann, U. Gösele, Chem. Rev. 110, 361 (2010)

    Article  Google Scholar 

  37. R. Khordad, Int. J. Thermophys. 34, 1148 (2013)

    Article  ADS  Google Scholar 

  38. A. Aydin, A. Sisman, in 12th Joint European Thermodynamics Conference. Proceedings of JETC 425, 2 (2013)

  39. R. Khordad, Mod. Phys. Lett. B 29, 1550127 (2015)

    Article  ADS  Google Scholar 

  40. S. Gumber, M. Kumar, M. Gambhir, M. Mohan, P.K. Jha, Can. J. Chem. 93, 1264 (2015)

    Google Scholar 

  41. T. Pengpan, C. Daengngam, Can. J. Chem. 86, 1327 (2007)

    Google Scholar 

  42. J.L. Xiao, J. Low Temp. Phys. 174, 284 (2014)

    Article  ADS  Google Scholar 

  43. Y.J. Chen, J.L. Xiao, J. Low Temp. Phys. 186, 241 (2017)

    Article  ADS  Google Scholar 

  44. G. Sukirti, K. Manoj, J.P. Kumar, M. Man, Chin. Phys. B 25, 056502 (2016)

    Article  ADS  Google Scholar 

  45. G.B. Ibragimov, Fizika 34, 35 (2003)

    Google Scholar 

  46. Y.J. Chen, J.L. Xiao, J. Low Temp. Phys. 170, 60 (2013)

    Article  ADS  Google Scholar 

  47. D. Liang, R. Quhe, Y.C. Chen, L. Wu, Q. Wang, P. Guan, S. Wang, P. Lu, RSC Adv. 7, 42455 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khordad, R., Sedehi, H.R.R. Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures. J Low Temp Phys 190, 200–212 (2018). https://doi.org/10.1007/s10909-017-1831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1831-x

Keywords

Navigation