Skip to main content
Log in

Effect of the magnetic field on the energy spectra of a quantum dot system

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Analytical solutions to the radial Schrodinger equation are obtained for a two-dimensional two-electron quantum dot system within the framework of a general interaction potential using the Taylor expansion method. The calculated results are compared with other theoretical works to check the efficacy of the present method. Effects of the Coulomb interaction, the anharmonic potential terms and the magnetic field on the energy spectra of quantum dot systems are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. B Chayanica J. Appl. Phys. 6 3089 (1998)

    Google Scholar 

  2. K Lis, S Bednarek, B Szafran and J Adamowski Physica E 17 494 (2003)

    Article  ADS  Google Scholar 

  3. A Cetin Phys. Lett. A 369 506 (2007)

    Article  ADS  Google Scholar 

  4. R Khordad Physica B 406 620 (2011)

    Article  ADS  Google Scholar 

  5. M A Kastner Phys. Today 46 24 (1993)

    Article  ADS  Google Scholar 

  6. C W J Beenakker Phys. Rev. B 44 1646 (1991)

    Article  ADS  Google Scholar 

  7. R C Ashoori, H L Stormer, J S Weiner, L N Pfeiffer, S J Pearton, K W Baldwin and K W West Phys. Rev. Lett. 68 3088 (1992)

    Article  ADS  Google Scholar 

  8. A Lorke, J P Kothaus and K Ploog Phys. Rev. Lett. 64 2559 (1990)

    Article  ADS  Google Scholar 

  9. S Bednarek, B Szafran and J Adamowski Phys. Rev. B 59 13036 (1999)

    Article  ADS  Google Scholar 

  10. M Governale Phys. Rev. Lett. 89 206802 (2002)

    Article  ADS  Google Scholar 

  11. R N C Filho, G Alencar, B S Skagerstam and J S Andrade Euro Phys. Lett. 101 10009 (2013)

    Article  Google Scholar 

  12. U Merkt, J Huser and M Wagner Phys. Rev. B 43 7320 (1991)

    Article  ADS  Google Scholar 

  13. M Taut Phys. Rev. A 48 3561 (1993)

    Article  ADS  Google Scholar 

  14. O Ciftja and M G Faruk Phys. Rev. B 72 205334 (2005)

    Article  ADS  Google Scholar 

  15. L L Sun and F C Ma J. Appl. Phys. 94 5844 (2003)

    Article  ADS  Google Scholar 

  16. A Boda, B Boyacioglu and A Chatterjee J. Appl. Phys. 114 044311 (2013)

    Article  ADS  Google Scholar 

  17. O Ciftja and A A Kumar Phys. Rev. B 70 205326 (2004)

    Article  ADS  Google Scholar 

  18. R Khordad Superlatt. Microstruct. 62 166 (2013)

    Article  ADS  Google Scholar 

  19. R M G G Castelan, W S Choe and Y C Lee Phys. Rev. B 57 9792 (1998)

    Article  ADS  Google Scholar 

  20. M E Said Phys. Rev. B 61 13026 (2000)

    Article  ADS  Google Scholar 

  21. H Hassanabadi Eur. Phys. J. B 74 415 (2010)

    Article  ADS  Google Scholar 

  22. H Hassanabadi, M Hamzavi and A A Rajabi Mod. Phys. Lett. B 24 1127 (2010)

    Article  ADS  Google Scholar 

  23. R Rani and F Chand Ind. J. Phys. 92 145 (2018)

    Article  Google Scholar 

  24. R Rani and F Chand Appl. Sci. Lett. 2 129 (2016)

    Google Scholar 

  25. R Rani, S B Bhardwaj and F Chand Commun. Theor. Phys. 70 179 (2018)

    Article  ADS  Google Scholar 

  26. R Rani, S B Bhardwaj and F Chand Pramana J. Phys. 91 46 (2018)

    Article  ADS  Google Scholar 

  27. H Hassanabadi, M Hamzavi, S Zarrinkamar and A A Rajabi Few-Body Syst. 48 53 (2010)

    Article  ADS  Google Scholar 

  28. X Y Gu Found. Phys. 36 1884 (2006)

    Article  ADS  Google Scholar 

  29. C Yannouleas and U Landman Phys. Rev. Lett. 85 1726 (2000)

    Article  ADS  Google Scholar 

  30. R Khordad Ind. J. Phys. 87(7) 623 (2013)

    Article  Google Scholar 

  31. R Khordad Ind. J. Phys. 86(6) 513 (2012)

    Article  Google Scholar 

  32. W Xie Superlatt. Microstruct. 50 91 (2011)

    Article  ADS  Google Scholar 

  33. R Khordad J. Math. Phys. 54 062102 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. R Khordad and H R Rastegar Sedehi, Eur. Phys. J. Plus 134 133 (2019)

    Article  Google Scholar 

  35. R Khordad J. Mag. Mag. Mat. 449 510 (2018)

    Article  ADS  Google Scholar 

  36. R Khordad and H R Rastegar Sedehi Sol. Stat. commun. 269 118 (2018)

    Article  ADS  Google Scholar 

  37. H Hassanabadi, E Maghsoodi and S Zarrinkamar Few-Body Syst. 53 271 (2012)

    Article  ADS  Google Scholar 

  38. S Sargolzaeipor, H Hassanabadi and W S Chung Eur. Phys. J. Plus 133 11827 (2018)

    Google Scholar 

  39. S Sargolzaeipor, H Hassanabadi and W S Chung Mod. Phys. Lett. A 34 1950023 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are very much thankful to anonymous referees for their valuable comments which led a significant improvement in the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakir Chand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, R., Kumar, V., Bhardwaj, S.B. et al. Effect of the magnetic field on the energy spectra of a quantum dot system. Indian J Phys 94, 1705–1709 (2020). https://doi.org/10.1007/s12648-019-01621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01621-5

Keywords

PACS Nos.

Navigation