Skip to main content
Log in

The Design and Characterization of Dielectric Microcalorimeters for X-ray Photon Detection

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The dielectric micro calorimeter (DMC) is a novel radiation detector utilizing a GHz resonator with dielectric thermometer (Sekiya et al. in J Low Temp Phys 167:435, 2012). The advantage of using a DMC is that the detection mechanism is based on a phonon mediation without Johnson noise and quasi-particle decay process. A large format array of DMCs can be easily multiplexed by a resonator circuit in the readout at GHz band width. We describe the design of a DMC as an X-ray photon counter. It is optimized to detect photon at 5.9 keV energy. We consider \(^{18}\)O-doped SrTiO\(_3\) (STO18) and Nb-doped KTa\(_{(1-x)}\)Nb\(_{x}\)O\(_{3}\) (KTN) as a candidate of dielectric thermometer. Dielectric materials which have sensitivity \(\alpha \)(= d\(\log {C_{\mathrm {el}}}/d\log {T}\)) are also ideal for our application. We check that both STO18 and KTN have \(\alpha {\sim } 10^{3}\) at 100 mK. If we assume a DMC resonator operating at 100 mK, we need a Q value of a resonator to be 2000 for X-ray detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Sekiya, N.Y. Yamasaki, K. Mitsuda, S. Kawasaki, Y. Takei, H. Yoshitake, K. Maehata, H. Takashima, J. Low Temp. Phys. 167, 435 (2012). doi:10.1007/s10909-012-0563-1

    Article  ADS  Google Scholar 

  2. E.H. Silver, S.E. Labov, Nucl. Instr. Meth. Phys. Res. A277, 657 (1988). doi:10.1016/0168-9002(89)90800-0

    ADS  Google Scholar 

  3. H. Takashima, R. Wang, S. Kim, N. Shirakawa, B. Prijamboedi, M. Okano, A. Shoji, M. Itoh, Appl. Phys. Lett. 88, 082906 (2006). doi:10.1063/1.2177628

    Article  ADS  Google Scholar 

  4. N.Y. Yamasaki, N. Sekiya, T. Kikuchi, M. Hoshino, K. Mitsuda, K. Sato, J. Low Temp. Phys. 181, 59 (2015). doi:10.1007/s10909-015-1324-8

    Article  ADS  Google Scholar 

  5. A. Duran, J. Phys. 20, 085219 (2008). doi:10.1088/0953-8984/20/8/085219

    Google Scholar 

  6. B.A. Mazin, M.E. Eckart, B. Bumble, S. Golwala, P.K. Day, J. Gao, J. Zmuidzinas, J. Low Temp. Phys. 151, 537 (2008). doi:10.1007/s10909-007-9686-1

    Article  ADS  Google Scholar 

  7. Suemune Yasutaka, J. Phys. Soc. Jpn. 20, 174–175 (1965)

    Article  Google Scholar 

  8. F. Pobell, Matter and Methods at Low Temperature, chap. 3 (Springer, Berlin, 2007)

Download references

Acknowledgments

We are grateful to Dr. Kazuhiro Sakai for his practical advice. This work was financially supported by JSPS Grants-in-Aid (KAKENHI 24656064, 26220703 and 21340046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kikuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, T., Hoshino, M., Nakayama, T. et al. The Design and Characterization of Dielectric Microcalorimeters for X-ray Photon Detection. J Low Temp Phys 184, 250–256 (2016). https://doi.org/10.1007/s10909-016-1587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1587-8

Keywords

Navigation