Skip to main content
Log in

Dielectric Resonators as Radiation Detectors at Low Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

GHz LC resonators whose resonance frequency depends on temperature may be put to use as radiation detectors. We have demonstrated that a resonator utilizing STO (SrTiO\(_{3}\)) at 4 and 2 K detected infrared light emitting diode (LED) light, by a shift of resonance frequency around 2 GHz. A suitable design of a resonator array with temperature-dependent dielectric material will be used as a large-format microcalorimeter array without or with only very small Johnson noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. IR0502LC1 by MITEQ Inc.

References

  1. C. Enss (ed.), Cryogenic Particle Detection, Chap. 1 (Springer, Berlin, 2005)

  2. K. Mitsuda et al., in Proc SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray (2014), ID 91442A. doi:10.1117/12.2057199

  3. L. Ravera et al., in Proc SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray (2014), ID 91442L. doi:10.1117/12.2055884

  4. K.D. Irwin et al., AIP Conf. Ser. 1188, 229 (2009)

    Article  ADS  Google Scholar 

  5. S. McHugh et al., Rev. Sci. Instrum. 83, 044702 (2012)

    Article  ADS  Google Scholar 

  6. B.A. Mazin et al., Appl. Phys. Lett. 89, 222507 (2006)

    Article  ADS  Google Scholar 

  7. B.A. Mazin et al., J. Low Temp. Phys. 151, 537 (2008)

    Article  ADS  Google Scholar 

  8. J. Baselmans, J. Low Temp. Phys. 167, 292 (2012)

    Article  ADS  Google Scholar 

  9. J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169 (2012)

    Article  Google Scholar 

  10. E.H. Silver et al., Nucl. Instrum. Methods Phys. Res. Sect. A 277, 657 (1989)

    Article  ADS  Google Scholar 

  11. T. Ariyoshi et al., Nucl. Instrum. Methods Phys. Res. Sect. A 559, 576 (2006)

    Article  ADS  Google Scholar 

  12. N. Sekiya et al., J. Low Temp. Phys. 167, 435 (2012)

    Article  ADS  Google Scholar 

  13. H. Takashima et al., Appl. Phys. Lett. 88, 082906 (2006)

    Article  ADS  Google Scholar 

  14. P.L. Richards, J. Appl. Phys. 76, 1 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Duran et al., J. Phys. 20, 085219 (2008)

    Google Scholar 

  16. F. Pobell, Matter and Methods at Low Temperatures, chap. 3 (Springer, Berlin, 2003)

    Google Scholar 

Download references

Acknowledgments

The low-temperature HBT amplifier and room temperature amplifiers were supplied by Dr. D. Kojima at National Astronomical Observatory of Japan. This work is partially supported by Grants-in-Aid for Scientific Research (KAKENHI) from the JSPS, Nos. 20340068,21340046, and 25800112. N. Sekiya thanks the support by a Grant-in-Aid for JSPS Fellows No. 12J10673.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Y. Yamasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamasaki, N.Y., Sekiya, N., Kikuchi, T. et al. Dielectric Resonators as Radiation Detectors at Low Temperatures. J Low Temp Phys 181, 59–67 (2015). https://doi.org/10.1007/s10909-015-1324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1324-8

Keywords

Navigation