Skip to main content
Log in

Ginzburg-Landau Analysis of the Critical Temperature and the Upper Critical Field for Three-Band Superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Using the microscopic formalism of Eilenberger equations, a three-band Ginzburg-Landau theory for the intraband dirty limit and clean interband scattering case is derived. Within the framework of this three-band Ginzburg-Landau theory, expressions for the critical temperature T c and the temperature dependence of the upper critical field H c2 are obtained. Based on some special cases of the matrix of interaction constants, we demonstrate the influence of the sign of the interband interaction on the critical temperature and the upper critical field as compared with a two-band superconductor where it plays no role. We study also analytically and numerically the effect of its magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  2. M. Tortello, D. Daghero, G.A. Ummarino, V.A. Stepanov, J. Jiang, J.D. Weiss, E.E. Hellstrom, R.S. Gonnelli, Phys. Rev. Lett. 105, 237002 (2010)

    Article  ADS  Google Scholar 

  3. S. Johnston et al. unpublished

  4. P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. Lett. 100, 257001 (2008)

    Article  ADS  Google Scholar 

  5. M.J. Rice, Philos. Mag. B 65, 1419 (1992)

    Article  ADS  Google Scholar 

  6. M.J. Rice, H.-Y. Choi, Y.R. Wang, Phys. Rev. B 44, 10414 (1991)

    Article  ADS  Google Scholar 

  7. Q.H. Wang, C. Platt, Y. Yang, F.C. Zhang, W. Hanke, T.M. Rice, R. Thomale. arXiv:1305.2317v1

  8. J. Garaud, J. Carlström, E. Babaev, Phys. Rev. Lett. 10(7), 197001 (2011)

    Article  ADS  Google Scholar 

  9. S.-Z. Lin, X. Hu, New J. Phys. 14, 063021 (2012)

    Article  ADS  Google Scholar 

  10. J. Garaud, J. Carlström, E. Babaev, M. Speight, Phys. Rev. B 87, 014507 (2013)

    Article  ADS  Google Scholar 

  11. L. Komendová, Y. Chen, A.A. Shanenko, M.V. Milošević, F.M. Peeters, Phys. Rev. Lett. 108, 207002 (2012)

    Article  ADS  Google Scholar 

  12. S.V. Shulga, S.-L. Drechsler, J. Low Temp. Phys. 129, 93 (2002)

    Article  ADS  Google Scholar 

  13. S.V. Shulga, S.-L. Drechsler, G. Fuchs, K.-H. Müller, K. Winzer, M. Heinecke, K. Krug, Phys. Rev. Lett. 80, 1730 (1998)

    Article  ADS  Google Scholar 

  14. H. Doh, M. Sigrist, B.K. Cho, S.L. Lee, Phys. Rev. Lett. 83, 5350 (1999)

    Article  ADS  Google Scholar 

  15. I.N. Askerzade, A. Gencer, N. Guclu, A. Kihc, Supercond. Sci. Technol. 15, L13 (2002)

    Article  ADS  Google Scholar 

  16. A. Gurevich, Phys. Rev. B 67, 184515 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  17. A.A. Golubov, A.E. Koshelev, Phys. Rev. B 68, 104503 (2003)

    Article  ADS  Google Scholar 

  18. M. Mansor, J.P. Carbotte, Phys. Rev. B 72, 024538 (2005)

    Article  ADS  Google Scholar 

  19. I.N. Askerzade, JETP Lett. 81, 583 (2005)

    Article  ADS  Google Scholar 

  20. P. Udomsamuthirun, A. Changjan, C. Kumvongsa, S. Yoksan, Physica C 433, 62 (2006)

    Article  ADS  Google Scholar 

  21. A. Gurevich, Physica C 456, 160 (2007)

    Article  ADS  Google Scholar 

  22. L. Min-Zia, G. ZiZhao, Chin. Phys. 16, 826 (2007)

    Article  ADS  Google Scholar 

  23. A. Changjana, P. Udomsamuthiruna, Solid State Commun. 151, 988 (2011)

    Article  ADS  Google Scholar 

  24. Y.Y. Tanaka, I. Hase, K. Yamaji, J. Phys. Soc. Jpn. 81, 024712 (2012)

    Article  ADS  Google Scholar 

  25. R.G. Dias, A.M. Marques, Supercond. Sci. Technol. 24, 085009 (2011)

    Article  ADS  Google Scholar 

  26. V. Stanev, Z. Tešanović, Phys. Rev. B 81, 134522 (2010)

    Article  ADS  Google Scholar 

  27. V. Stanev, Phys. Rev. B 85, 174520 (2012)

    Article  ADS  Google Scholar 

  28. S.-Z. Lin, X. Hu, Phys. Rev. Lett. 108, 177005 (2012)

    Article  ADS  Google Scholar 

  29. M. Nitta, M. Eto, T. Fujimori, K. Ohashi, J. Phys. Soc. Jpn. 81, 084711 (2012)

    Article  ADS  Google Scholar 

  30. T.K. Ng, Phys. Rev. Lett. 103, 236402 (2009)

    Article  ADS  Google Scholar 

  31. V. Stanev, A.E. Koshelev. arXiv:1306.4268v1

  32. K.D. Usadel, Phys. Rev. Lett. 25, 507 (1970)

    Article  ADS  Google Scholar 

  33. A.V. Svidzinski, Space-Inhomogeneous Problems in the Theory of Superconductivity (Nauka, Moscow, 1982)

    Google Scholar 

  34. A.A. Shanenko, M.V. Milošević, F.M. Peeters, A.V. Vagov, Phys. Rev. Lett. 106, 047005 (2011)

    Article  ADS  Google Scholar 

  35. A. Vagov, A.A. Shanenko, M.V. Milošević, V.M. Axt, F.M. Peeters, Phys. Rev. B 86, 144514 (2012)

    Article  ADS  Google Scholar 

  36. N.V. Orlova, A.A. Shanenko, M.V. Milošević, F.M. Peeters, A.V. Vagov, V.M. Axt, Phys. Rev. B 87, 134510 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

We thank the German-Ukrainian project for financial support. Discussions with D. Efremov, B. Holzapfel, Jeroen van den Brink, and A. Omelyanchouk are kindly acknowledged. Y.Y. thanks the IFW-Dresden for hospitality where the present work has been performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yerin.

Appendices

Appendix A: Derivation of Ginzburg-Landau Equations

For the anomalous Green functions f i we get:

$$ f_{i} = \frac{D_{i}}{2\omega^{2}}\nabla^{2}\varDelta _{_{i}} - \frac{\vert \varDelta _{i} \vert ^{2}\varDelta _{i}}{2\omega^{3}} + \frac{\varDelta _{i}}{\omega}. $$
(A.1)

Substituting f i into the self-consistency Eqs. (4) after the summation over the Matsubara frequencies we have finally

$$ \left\{ \begin{array}{ll} \varDelta _{1}N_{1} &= \lambda_{11}N_{1} \bigl[ \frac{\pi D_{1}}{8T_{c}}\varPi^{2}\varDelta _{1} - \frac{7\zeta ( 3 )}{8\pi^{2}T_{c}^{2}}\vert \varDelta _{1} \vert ^{2}\varDelta _{1} + l\varDelta _{1} \bigr]\\ &\quad + \lambda_{12}N_{2} \bigl[ \frac{\pi D_{2}}{8T_{c}}\varPi^{2}\varDelta _{2} - \frac{7\zeta ( 3 )}{8\pi^{2}T_{c}^{2}}\vert \varDelta _{2} \vert ^{2}\varDelta _{2} + l\varDelta _{2} \bigr]\\ &\quad + \lambda_{13}N_{3} \bigl[ \frac{\pi D_{3}}{8T_{c}}\varPi^{2}\varDelta _{3} - \frac{7\zeta ( 3 )}{8\pi^{2}T_{c}^{2}}\vert \varDelta _{3} \vert ^{2}\varDelta _{3} + l\varDelta _{3} \bigr], \\ \varDelta _{2}N_{2} &= \lambda_{21}N_{1} \bigl[ \frac{\pi D_{1}}{8T_{c}}\varPi^{2}\varDelta _{1} - \frac{7\zeta ( 3 )}{8\pi^{2}T_{c}^{2}}\vert \varDelta _{1} \vert ^{2}\varDelta _{1} + l\varDelta _{1} \bigr] \\ &\quad + \lambda_{22}N_{2} \bigl[ \frac{\pi D_{2}}{8T_{c}}\varPi^{2}\varDelta _{2} - \frac{7\zeta ( 3 )}{8\pi^{2}T_{c}^{2}}\vert \varDelta _{2} \vert ^{2}\varDelta _{2} + l\varDelta _{2} \bigr] \\ &\quad + \lambda_{23}N_{3} \bigl[ \frac{\pi D_{3}}{8T_{c}}\varPi^{2}\varDelta _{3} - \frac{7\zeta ( 3 )}{8\pi^{2}T_{c}^{2}}\vert \varDelta _{3} \vert ^{2}\varDelta _{3} + l\varDelta _{3} \bigr], \\ \varDelta _{3}N_{3} &= \lambda_{31}N_{1} \bigl[ \frac{\pi D_{1}}{8T_{c}}\varPi^{2}\varDelta _{1} - \frac{7\zeta ( 3 )}{8\pi^{2}T_{c}^{2}}\vert \varDelta _{1} \vert ^{2}\varDelta _{1} + l\varDelta _{1} \bigr]\\ &\quad + \lambda_{32}N_{2} \bigl[ \frac{\pi D_{2}}{8T_{c}}\varPi^{2}\varDelta _{2} - \frac{7\zeta ( 3 )}{8\pi^{2}T_{c}^{2}}\vert \varDelta _{2} \vert ^{2}\varDelta _{2} + l\varDelta _{2} \bigr]\\ &\quad + \lambda_{33}N_{3} \bigl[ \frac{\pi D_{3}}{8T_{c}}\varPi^{2}\varDelta _{3} - \frac{7\zeta ( 3 )}{8\pi^{2}T_{c}^{2}}\vert \varDelta _{3} \vert ^{2}\varDelta _{3} + l\varDelta _{3} \bigr]. \end{array} \right. $$
(A.2)

In order to obtain the GL equations, we multiply the first equation by λ 22 λ 33λ 23 λ 32, the second equation by −(λ 12 λ 33λ 13 λ 32) and the third equation by λ 12 λ 23λ 13 λ 22. Then we sum these three expressions over Matsubara frequencies and finally obtain the GL equations (6) for Δ 1, Δ 2, and Δ 3.

Appendix B: The Determination of the Critical Temperature

T c can be found from the linearization of the GL system (6):

$$ \left\{ \begin{array}{l} \alpha_{1}\varDelta _{1} + \gamma_{12}\varDelta _{2} + \gamma_{13}\varDelta _{3} = 0, \\ \alpha_{2}\varDelta _{2} + \gamma_{21}\varDelta _{1} + \gamma_{23}\varDelta _{3} = 0, \\ \alpha_{3}\varDelta _{3} + \gamma_{31}\varDelta _{1} + \gamma_{32}\varDelta _{2} = 0. \end{array} \right. $$
(B.1)

which leads to the cubic equation:

$$ \alpha_{1}\alpha_{2}\alpha_{3} - \gamma_{32}\gamma_{23}\alpha_{1} - \gamma_{31}\gamma_{13}\alpha_{2} - \gamma_{12}\gamma_{21}\alpha_{3} + \gamma_{12}\gamma_{31}\gamma_{23} + \gamma_{13}\gamma_{21}\gamma_{32} = 0, $$
(B.2)

or using the phenomenological constants γ ij introduced in the main paper:

$$\begin{aligned} &( l - a_{1} ) ( l - a_{2} ) ( l - a_{3} ) - \tilde{\gamma}_{32}\tilde{\gamma}_{23} ( l - a_{1} ) - \tilde{\gamma}_{31}\tilde{\gamma}_{13} ( l - a_{2} ) - \tilde{\gamma}_{12}\tilde{\gamma}_{21} ( l - a_{3} ) \\ &\quad + \tilde{\gamma}_{12}\tilde{\gamma}_{31} \tilde{\gamma}_{23} + \tilde{\gamma}_{13}\tilde{ \gamma}_{21}\tilde{\gamma}_{32} = 0. \end{aligned}$$
(B.3)

Equation (B.3) can be rewritten as:

$$ \begin{aligned}[b] &l^{3} - ( a_{1} + a_{2} + a_{3} )l^{2} + ( a_{1}a_{2} + a_{1}a_{3} + a_{2}a_{3} - \tilde{\gamma}_{12}\tilde{\gamma}_{21} - \tilde{\gamma}_{31}\tilde{\gamma}_{13} - \tilde{\gamma}_{32}\tilde{\gamma}_{23} )l\\ &\quad + \tilde{\gamma}_{32}\tilde{\gamma}_{23}a_{1} + \tilde{\gamma}_{31}\tilde{\gamma}_{13}a_{2} + \tilde{\gamma}_{12}\tilde{\gamma}_{21}a_{3} + \tilde{\gamma}_{12}\tilde{\gamma}_{31}\tilde{\gamma}_{23} + \tilde{\gamma}_{13}\tilde{\gamma}_{21}\tilde{\gamma}_{32} = 0. \end{aligned} $$
(B.4)

Comparing Eq. (B.3) with the general form of a cubic equation and bearing in mind the representation of the coefficients a i and γ ij , we get

$$ l^{3} + Bl^{2} + Cl + D = 0, $$
(B.5)

where

$$\begin{aligned} B &\equiv - \frac{1}{\det ( \lambda )}\sum_{i} M_{ii}, \\ C &\equiv \frac{M_{11}M_{22} + M_{11}M_{33} + M_{22}M_{33} - M_{12}M_{21} - M_{13}M_{31} - M_{23}M_{32}}{\det^{2} ( \lambda )}, \\ D &\equiv \frac{M_{11}M_{23}M_{32} + M_{13}M_{22}M_{31} + M_{12}M_{21}M_{33} - M_{13}M_{21}M_{32} - M_{12}M_{23}M_{31} - M_{11}M_{22}M_{33}}{\det^{3} ( \lambda )}. \end{aligned}$$

Depending on the sign of the discriminant Z=18BCD−4B 3 D+B 2 C 2−4C 3−27D 2 we have three distinct real roots, if Z>0, one real root and two complex conjugate roots, if Z<0 and three real roots, if Z=0.

If we expand the coefficients B, C and D in terms of the coupling constants λ ij and simplify the obtained expressions, we reveal that Eq. (B.5) for determination of the critical temperature is equivalent to the secular equation for the coupling matrix (7).

Appendix C: The Curvature of the Upper Critical Field

In the case (i) the upper critical field is determined by the equation:

$$ A^{ ( h )}h_{c2}^{3} + B^{ ( h )}h_{c2}^{2} + C^{ ( h )}h_{c2} + D^{ ( h )} = 0, $$
(C.1)

where

$$\begin{aligned} A^{ ( h )} &= - d_{12}d_{13}, \end{aligned}$$
(C.2)
$$\begin{aligned} B^{ ( h )} &= ( d_{12} + d_{13} + d_{12}d_{13} ) ( \eta - a - t ), \end{aligned}$$
(C.3)
$$\begin{aligned} C^{ ( h )} &= - ( 1 + d_{12} + d_{13} ) ( \eta - a - \tilde{\gamma} - t ) ( \eta - a + \tilde{\gamma} - t ), \end{aligned}$$
(C.4)
$$\begin{aligned} D^{ ( h )} &= ( \eta - a + 2\tilde{\gamma} - t ) ( \eta - a - \tilde{ \gamma} - t )^{2}. \end{aligned}$$
(C.5)

Let’s consider the simple case when d 12=d 13=d and \(a = \frac{k_{0} + k_{1}}{k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2}}\), \(\tilde{\gamma} = \frac{k_{1}}{k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2}}\) and \(\eta_{a} = 1 + \frac{1}{k_{0} + 2k_{1}}\) (attractive interband interaction).

Then the second derivative yields

$$\begin{aligned} &\frac{d^{2}h_{c2}}{dt^{2}} = \frac{1}{2}\frac{1}{d ( k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2} )} \\ &\quad \times \frac{8d ( d - 1 )^{2}k_{1}^{2} ( k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2} )^{2}}{ \Bigl( \Bigl( t - \frac{ ( d - 1 ) ( k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2} ) - 2dk_{1} + k_{1} - 2\sqrt{2d} ik_{1}}{ ( k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2} ) ( d - 1 )} \Bigr) \Bigl( t - \frac{ ( d - 1 ) ( k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2} ) - 2dk_{1} + k_{1} + 2\sqrt{2d} ik_{1}}{ ( k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2} ) ( d - 1 )} \Bigr) \Bigr)^{\frac{3}{2}}} \end{aligned}$$
(C.6)

After further simplifications we obtain

$$\begin{aligned} \frac{d^{2}h_{c2}}{dt^{2}} &= \frac{1}{2}\frac{1}{d ( k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2} )} \\ &\quad \times \frac{8d ( d - 1 )^{2}k_{1}^{2} ( k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2} )^{5}}{ ( ( ( k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2} ) ( d - 1 )^{2}t - ( d - 1 ) ( k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2} ) - 2dk_{1} + k_{1} )^{2} + 8dk_{1}^{2} )^{\frac{3}{2}}} \\ & = \frac{4 ( d - 1 )^{2}k_{1}^{2} ( k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2} )^{4}}{ ( ( ( k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2} ) ( d - 1 )t - ( d - 1 ) ( k_{0}^{2} + k_{0}k_{1} - 2k_{1}^{2} ) - 2dk_{1} + k_{1} )^{2} + 8dk_{1}^{2} )^{\frac{3}{2}}} \ge 0. \end{aligned}$$
(C.7)

Analogously it can be shown for repulsive interband interactions, that \(\frac{d^{2}h_{c2}}{dt^{2}}\) is non-negative, too.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yerin, Y., Drechsler, SL. & Fuchs, G. Ginzburg-Landau Analysis of the Critical Temperature and the Upper Critical Field for Three-Band Superconductors. J Low Temp Phys 173, 247–263 (2013). https://doi.org/10.1007/s10909-013-0903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0903-9

Keywords

Navigation