Skip to main content
Log in

A Simple Phenomenological Model for the Effective Kinematic Viscosity of Helium Superfluids

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A number of experiments where quantum turbulence in helium superfluids has been generated by various means (such as towed/oscillating grids, thermal counterflow, pure superflow, spin-down, ion/vortex rings emission) displays a temporal decay of the observed vortex line density, of the power law form L=Γ t −3/2 at late times. The prefactor, Γ, in analogy with classical homogeneous isotropic turbulence, allows deducing the temperature dependent effective kinematic viscosity, νeff, for turbulent helium superfluids. It appears to be a robust quantity, independent of methods of generating quantum turbulence and detecting the decaying vortex line density. We present a simple phenomenological model to estimate νeff based on comparison of dissipation terms in equations of motion for classical viscous flow and vortex flow of a superfluid in a stationary normal fluid. This model leads to νeffκ q, where q=α/(1−α′); α and α′ being dimensionless mutual friction parameters. Within the temperature range where mutual friction dissipation mechanism is dominant this simple model prediction agrees well with the experimental data and with the recent theoretical estimate of Roche, Barenghi and Leveque (Europhys. Lett. 87:54006, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1953)

    MATH  Google Scholar 

  2. M. Lesieur, Turbulence in Fluids, 3rd edn. (Kluwer, Dordrecht, 1997)

    MATH  Google Scholar 

  3. M.R. Smith, R.J. Donnelly, N. Goldenfeld, W.F. Vinen, Phys. Rev. Lett. 71, 2583 (1993)

    Article  ADS  Google Scholar 

  4. S.R. Stalp, L. Skrbek, R.J. Donnelly, Phys. Rev. Lett. 82, 4831 (1999)

    Article  ADS  Google Scholar 

  5. L. Skrbek, J.J. Niemela, R.J. Donnelly, Phys. Rev. Lett. 85, 2973 (2000)

    Article  ADS  Google Scholar 

  6. J.J. Niemela, K.R. Sreenivasan, R.J. Donnelly, J. Low Temp. Phys. 138, 537 (2005)

    Article  ADS  Google Scholar 

  7. P.M. Walmsley, A.I. Golov, H.E. Hall, A.A. Levchenko, W.F. Vinen, Phys. Rev. Lett. 99, 265302 (2007)

    Article  ADS  Google Scholar 

  8. P.M. Walmsley, A.I. Golov, Phys. Rev. Lett. 100, 245301 (2008)

    Article  ADS  Google Scholar 

  9. P.M. Walmsley, A.I. Golov, H.E. Hall, W.F. Vinen, A.A. Levchenko, J. Low Temp. Phys. 153, 127 (2008)

    Article  ADS  Google Scholar 

  10. L. Skrbek, A.V. Gordeev, F. Soukup, Phys. Rev. E 67, 047302 (2003)

    Article  ADS  Google Scholar 

  11. A.V. Gordeev, T.V. Chagovets, F. Soukup, L. Skrbek, J. Low Temp. Phys. 138, 549 (2005)

    Article  ADS  Google Scholar 

  12. C.F. Barenghi, A.V. Gordeev, L. Skrbek, Phys. Rev. E 74, 026309 (2006)

    Article  ADS  Google Scholar 

  13. T.V. Chagovets, L. Skrbek, Phys. Rev. Lett. 100, 215302 (2008)

    Article  ADS  Google Scholar 

  14. T.V. Chagovets, L. Skrbek, J. Low Temp. Phys. 153, 162 (2008)

    Article  ADS  Google Scholar 

  15. D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guenault, R.P. Haley, C.J. Matthews, G.R. Pickett, V. Tsepelin, K. Zaki, Phys. Rev. Lett. 96, 035301 (2006)

    Article  ADS  Google Scholar 

  16. L. Skrbek, S.R. Stalp, Phys. Fluids 12, 1997 (2000)

    Article  ADS  Google Scholar 

  17. W.F. Vinen, Phys. Rev. B 61, 1410 (2000)

    Article  ADS  Google Scholar 

  18. S.R. Stalp, J.J. Niemela, W.F. Vinen, R.J. Donnelly, Phys. Fluids 14, 1377 (2002)

    Article  ADS  Google Scholar 

  19. C. Morize, F. Moisy, Phys. Fluids 18, 065107 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  20. H. Touil, J.P. Bertoglio, L. Shao, J. Turbul. 3, 049 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  21. K.R. Sreenivasan, Phys. Fluids 7, 27788 (1995)

    Article  MathSciNet  Google Scholar 

  22. T.V. Chagovets, A.V. Gordeev, L. Skrbek, Phys. Rev. E 76, 027301 (2007)

    Article  ADS  Google Scholar 

  23. W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002)

    Article  Google Scholar 

  24. P.E. Roche, C.F. Barenghi, E. Leveque, Europhys. Lett. 87, 54006 (2009)

    Article  ADS  Google Scholar 

  25. V.S. L’vov, S.V. Nazarenko, L. Skrbek, J. Low Temp. Phys. 145, 125 (2006)

    Article  ADS  Google Scholar 

  26. A.P. Finne, T. Araki, R. Blaauwgeers, V.B. Eltsov, N.B. Kopnin, M. Krusius, L. Skrbek, M. Tsubota, G.E. Volovik, Nature 424, 1022 (2003)

    Article  ADS  Google Scholar 

  27. G.E. Volovik, JETP Lett. 78, 533 (2003)

    Article  ADS  Google Scholar 

  28. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Data 27, 1217 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Skrbek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skrbek, L. A Simple Phenomenological Model for the Effective Kinematic Viscosity of Helium Superfluids. J Low Temp Phys 161, 555–560 (2010). https://doi.org/10.1007/s10909-010-0235-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0235-y

Keywords

Navigation