Skip to main content
Log in

Proximity Effect between a Dirty Fermi Liquid and Superfluid 3He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The proximity effect in superfluid 3He partly filled with high porosity aerogel is discussed. This system can be regarded as a dirty Fermi liquid/spin-triplet p-wave superfluid junction. Our attention is mainly paid to the case when the dirty layer is in the normal state owing to the impurity pair-breaking effect by the aerogel. We use the quasiclassical Green’s function to determine self-consistently the spatial variations of the p-wave order parameter and the impurity self-energy. On the basis of the fully self-consistent calculation, we analyze the spatial dependence of the pair function (anomalous Green’s function). The spin-triplet pair function has in general even-frequency odd-parity and odd-frequency even-parity components. We show that the admixture of the even- and odd-frequency pairs occurs near the aerogel/superfluid 3He-B interface. Among those Cooper pairs, only the odd-frequency s-wave pair can penetrate deep into the aerogel layer. As a result, the proximity-induced superfluidity in a thick aerogel layer is dominated by the Cooper pair with the odd-frequency s-wave symmetry. We also analyze the local density of states and show that it has a characteristic zero-energy peak reflecting the existence of the odd-frequency s-wave pair, in agreement with previous works using the Usadel equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ambegaokar, P.G. de Gennes, D. Rainer, Phys. Rev. A 9, 2676 (1974)

    Article  ADS  Google Scholar 

  2. L.J. Buchholtz, G. Zwicknagl, Phys. Rev. B 23, 5788 (1981)

    Article  ADS  Google Scholar 

  3. Y. Nagato, M. Yamamoto, K. Nagai, J. Low Temp. Phys. 110, 1135 (1998)

    Article  Google Scholar 

  4. Y. Aoki, Y. Wada, M. Saitoh, R. Nomura, Y. Okuda, Y. Nagato, M. Yamamoto, S. Higashitani, K. Nagai, Phys. Rev. Lett. 95, 075301 (2005)

    Article  ADS  Google Scholar 

  5. Y. Nagato, M. Yamamoto, S. Higashitani, K. Nagai, J. Low Temp. Phys. 149, 294 (2007)

    Article  ADS  Google Scholar 

  6. S. Higashitani, J. Phys. Soc. Jpn. 66, 2556 (1997)

    Article  ADS  Google Scholar 

  7. Y. Tanaka, S. Kashiwaya, Phys. Rev. B 70, 012507 (2004)

    Article  ADS  Google Scholar 

  8. Y. Tanaka, Y. Asano, A.A. Golubov, S. Kashiwaya, Phys. Rev. B 72, 140503 (2005)

    Article  ADS  Google Scholar 

  9. Y. Tanaka, A.A. Golubov, Phys. Rev. Lett. 98, 037003 (2007)

    Article  ADS  Google Scholar 

  10. Y. Tanaka, Y. Tanuma, A.A. Golubov, Phys. Rev. B 76, 054522 (2007)

    Article  ADS  Google Scholar 

  11. Y. Tanaka, A.A. Golubov, S. Kashiwaya, M. Ueda, Phys. Rev. Lett. 99, 037005 (2007)

    Article  ADS  Google Scholar 

  12. A. Balatsky, E. Abrahams, Phys. Rev. B 45, 13125 (1992)

    Article  ADS  Google Scholar 

  13. E. Abrahams, A. Balatsky, D.J. Scalapino, J.R. Schrieffer, Phys. Rev. B 52, 1271 (1995)

    Article  ADS  Google Scholar 

  14. Y. Fuseya, H. Kohno, K. Miyake, J. Phys. Soc. Jpn. 72, 2914 (2003)

    Article  MATH  ADS  Google Scholar 

  15. J.V. Porto, J.M. Parpia, Phys. Rev. Lett. 74, 4667 (1995)

    Article  ADS  Google Scholar 

  16. D.T. Sprague, T.M. Haard, J.B. Kycia, M.R. Rand, Y. Lee, P.J. Hamot, W.P. Halperin, Phys. Rev. Lett. 75, 661 (1995)

    Article  ADS  Google Scholar 

  17. E.V. Thuneberg, S.K. Yip, M. Fogelström, J.A. Sauls, Phys. Rev. Lett. 80, 2861 (1998)

    Article  Google Scholar 

  18. S. Higashitani, J. Low Temp. Phys. 114, 161 (1999)

    Article  Google Scholar 

  19. K. Matsumoto, J.V. Porto, L. Pollack, E.N. Smith, T.L. Ho, J.M. Parpia, Phys. Rev. Lett. 79, 253 (1997)

    Article  ADS  Google Scholar 

  20. D. Rainer, J.A. Sauls, J. Low Temp. Phys. 110, 525 (1998)

    Article  Google Scholar 

  21. L.T. Kurki, E.V. Thuneberg, J. Low Temp. Phys. 146, 59 (2007)

    Article  ADS  Google Scholar 

  22. Y. Tanaka, S. Kashiwaya, T. Yokoyama, Phys. Rev. B 71, 094513 (2005)

    Article  ADS  Google Scholar 

  23. Y. Tanaka, Y.V. Nazarov, A.A. Golubov, S. Kashiwaya, Phys. Rev. B 69, 144519 (2004)

    Article  ADS  Google Scholar 

  24. K.D. Usadel, Phys. Rev. Lett. 25, 507 (1970)

    Article  ADS  Google Scholar 

  25. J.W. Serene, D. Rainer, Phys. Rep. 101, 221 (1983)

    Article  ADS  Google Scholar 

  26. S. Higashitani, M. Miura, M. Yamamoto, K. Nagai, Phys. Rev. B 71, 134508 (2005)

    Article  ADS  Google Scholar 

  27. Y. Nagato, K. Nagai, J. Hara, J. Low Temp. Phys. 93, 33 (1993)

    Article  Google Scholar 

  28. Y. Nagato, S. Higashitani, K. Yamada, K. Nagai, J. Low Temp. Phys. 103, 1 (1996)

    Article  ADS  Google Scholar 

  29. S. Higashitani, K. Nagai, J. Phys. Soc. Jpn. 64, 549 (1995)

    Article  ADS  Google Scholar 

  30. M. Eschrig, Phys. Rev. B 61, 9061 (2000)

    Article  ADS  Google Scholar 

  31. G. Kieselmann, Phys. Rev. B 35, 6762 (1987)

    Article  ADS  Google Scholar 

  32. P.G. de Gennes, Rev. Mod. Phys. 36, 225 (1964)

    Article  ADS  Google Scholar 

  33. G. Deutscher, P.G. de Gennes, in Superconductivity, vol. 2, ed. by R.D. Parks (Dekker, New York, 1969), p. 1005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Higashitani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higashitani, S., Nagato, Y. & Nagai, K. Proximity Effect between a Dirty Fermi Liquid and Superfluid 3He. J Low Temp Phys 155, 83–97 (2009). https://doi.org/10.1007/s10909-009-9868-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-009-9868-0

Keywords

Navigation