Skip to main content
Log in

Structural transition, electric transport, and electronic structures in the compressed trilayer nickelate La4Ni3O10

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Atomic structure and electronic band structure are fundamental properties for understanding the mechanism of superconductivity. Motivated by the discovery of pressure-induced high-temperature superconductivity at 80 K in the bilayer Rud-dlesden-Popper nickelate La3Ni2O7, the atomic structure and electronic band structure of the trilayer nickelate La4Ni3O10 under pressure up to 44.3 GPa are investigated. A structural transition from the monoclinic P21/a space group to the tetragonal I4/mmm around 12.6–13.4 GPa is identified, accompanied by a drop of resistance below 7 K. Density functional theory calculations suggest that the bonding state of Ni \(3{d_{{z^2}}}\) orbital rises and crosses the Fermi level at high pressures, which may give rise to possible superconductivity observed in resistance under pressure in La4Ni3O10. The trilayer nickelate La4Ni3O10 shows some similarities with the bilayer La3Ni2O7 and has unique properties, providing a new platform to investigate the underlying mechanism of superconductivity in nickelates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Anisimov, D. Bukhvalov, and T. M. Rice, Phys. Rev. B 59, 7901 (1999).

    Article  ADS  Google Scholar 

  2. D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita, and H. Y. Hwang, Nature 572, 624 (2019).

    Article  ADS  Google Scholar 

  3. H. Sakakibara, H. Usui, K. Suzuki, T. Kotani, H. Aoki, and K. Kuroki, Phys. Rev. Lett. 125, 077003 (2020).

    Article  ADS  Google Scholar 

  4. M. Hepting, D. Li, C. J. Jia, H. Lu, E. Paris, Y. Tseng, X. Feng, M. Osada, E. Been, Y. Hikita, Y. D. Chuang, Z. Hussain, K. J. Zhou, A. Nag, M. Garcia-Fernandez, M. Rossi, H. Y. Huang, D. J. Huang, Z. X. Shen, T. Schmitt, H. Y. Hwang, B. Moritz, J. Zaanen, T. P. Devereaux, and W. S. Lee, Nat. Mater. 19, 381 (2020).

    Article  ADS  Google Scholar 

  5. H. Sun, M. Huo, X. Hu, J. Li, Z. Liu, Y. Han, L. Tang, Z. Mao, P. Yang, B. Wang, J. Cheng, D. X. Yao, G. M. Zhang, and M. Wang, Nature 621, 493 (2023).

    Article  ADS  Google Scholar 

  6. Y. N. Zhang, D. J. Su, Y. E. Huang, H. L. Sun, M. W. Huo, Z. Y. Shan, K. X. Ye, Z. H. Yang, R. Li, M. Smidman, M. Wang, L. Jiao, and H. Q. Yuan, arXiv: 2307.14819.

  7. J. Hou, P. T. Yang, Z. Y. Liu, J. Y. Li, P. F. Shan, L. Ma, G. Wang, N. N. Wang, H. Z. Guo, J. P. Sun, Y. Uwatoko, M. Wang, G. M. Zhang, B. S. Wang, and J. G. Cheng, Chin. Phys. Lett. 40, 117302 (2023).

    Article  ADS  Google Scholar 

  8. G. Wang, N. N. Wang, J. Hou, L. Ma, L. F. Shi, Z. A. Ren, Y. D. Gu, X. L. Shen, H. M. Ma, P. T. Yang, Z. Y. Liu, H. Z. Guo, J. P. Sun, G. M. Zhang, J. Q. Yan, B. S. Wang, Y. Uwatoko, and J. G. Cheng, Phys. Rev. X 14, 011040 (2024).

    Google Scholar 

  9. M. Zhang, C. Pei, Q. Wang, Y. Zhao, C. Li, W. Cao, S. Zhu, J. Wu, and Y. Qi, J. Mater. Sci. Tech. 185, 147 (2024).

    Article  Google Scholar 

  10. G. Wang, N. N. Wang, Y. X. Wang, L. F. Shi, X. L. Shen, J. Hou, H. M. Ma, P. T. Yang, Z. Y. Liu, H. Zhang, X. L. Dong, J. P. Sun, B. S. Wang, K. Jiang, J. P. Hu, Y. Uwatoko, and J. G. Cheng, arXiv: 2311.08212.

  11. Z. Liu, M. W. Huo, J. Li, Q. Li, Y. C. Liu, Y. M. Dai, X. X. Zhou, J. H. Hao, Y. Lu, M. Wang, and H. H. Wen, arXiv: 2307.02950.

  12. J. Huang, Z. D. Wang, and T. Zhou, Phys. Rev. B 108, 174501 (2023).

    Article  ADS  Google Scholar 

  13. J. G. Yang, H. L. Sun, X. W. Hu, Y. Y. Xie, T. M. Miao, H. L. Luo, H. Chen, B. Liang, W. P. Zhu, G. X. Qu, C. Q. Chen, M. W. Huo, Y. B. Huang, S. J. Zhang, F. F. Zhang, F. Yang, Z. M. Wang, Q. J. Peng, H. Q. Mao, G. D. Liu, Z. Y. Xu, T. Qian, D. X. Yao, M. Wang, L. Zhao, and X. J. Zhou, arXiv: 2309.01148.

  14. S. Ryee, N. Witt, and T. O. Wehling, arXiv: 2310.17465.

  15. R. S. Jiang, J. N. Hou, Z. Y. Fan, Z. J. Lang, and W. Ku, arXiv: 2308.11614.

  16. C. Lu, Z. M. Pan, F. Yang, and C. Wu, arXiv: 2310.02915.

  17. Q. G. Yang, D. Wang, and Q. H. Wang, Phys. Rev. B 108, L140505 (2023).

    Article  ADS  Google Scholar 

  18. H. Sakakibara, N. Kitamine, M. Ochi, and K. Kuroki, arXiv: 2306.06039.

  19. F. Lechermann, J. Gondolf, S. Bötzel, and I. M. Eremin, Phys. Rev. B 108, L201121 (2023).

    Article  ADS  Google Scholar 

  20. Y. H. Gu, C. C. Le, Z. S. Yang, X. X. Wu, and J. P. Hu, arXiv: 2306.07275.

  21. Y. Shen, M. Qin, and G. M. Zhang, Chin. Phys. Lett. 40, 127401 (2023).

    Article  ADS  Google Scholar 

  22. X. L. Sui, X. R. Han, X. J. Chen, L. Qiao, X. H. Shao, and B. Huang, arXiv: 2312.01271.

  23. Y. B. Liu, J. W. Mei, F. Ye, W. Q. Chen, and F. Yang, Phys. Rev. Lett. 131, 236002 (2023).

    Article  ADS  Google Scholar 

  24. L. H. Wang, Y. Li, S. Y. Xie, F. Y. Liu, H. L. Sun, C. X. Huang, Y. Gao, T. Nakagawa, B. Y. Fu, B. Dong, Z. H. Cao, R. Z. Yu, S. I. Kawaguchi, H. Kadobayashi, M. Wang, C. Q. Jin, H. K. Mao, and H. Z. Liu, arXiv: 2311.09186.

  25. H. Q. Liu, C. L. Xia, S. J. Zhou, and H. H. Chen, arXiv: 2311.07316.

  26. Y. Yang, G. M. Zhang, and F. C. Zhang, Phys. Rev. B 108, L201108 (2023).

    Article  ADS  Google Scholar 

  27. Z. Liu, H. Sun, M. Huo, X. Ma, Y. Ji, E. Yi, L. Li, H. Liu, J. Yu, Z. Zhang, Z. Chen, F. Liang, H. Dong, H. Guo, D. Zhong, B. Shen, S. Li, and M. Wang, Sci. China-Phys. Mech. Astron. 66, 217411 (2023).

    Article  ADS  Google Scholar 

  28. Z. Luo, X. Hu, M. Wang, W. Wú, and D. X. Yao, Phys. Rev. Lett. 131, 126001 (2023).

    Article  ADS  Google Scholar 

  29. I. G. Kuzemskaya, A. L. Kuzemsky, and A. A. Cheglokov, J. Low Temperature Phys. 118, 147 (2000).

    Article  ADS  Google Scholar 

  30. B. A. Scott, E. Y. Suard, C. C. Tsuei, D. B. Mitzi, T. R. McGuire, B. H. Chen, and D. Walker, Physica C-Supercond. 230, 239 (1994).

    Article  ADS  Google Scholar 

  31. G. Wu, J. J. Neumeier, and M. F. Hundley, Phys. Rev. B 63, 245120 (2001).

    Article  ADS  Google Scholar 

  32. D. Puggioni, and J. M. Rondinelli, Phys. Rev. B 97, 115116 (2018).

    Article  ADS  Google Scholar 

  33. J. Zhang, D. Phelan, A. S. Botana, Y. S. Chen, H. Zheng, M. Krogstad, S. G. Wang, Y. Qiu, J. A. Rodriguez-Rivera, R. Osborn, S. Rosenkranz, M. R. Norman, and J. F. Mitchell, Nat. Commun. 11, 6003 (2020).

    Article  ADS  Google Scholar 

  34. H. Li, X. Zhou, T. Nummy, J. Zhang, V. Pardo, W. E. Pickett, J. F. Mitchell, and D. S. Dessau, Nat. Commun. 8, 704 (2017).

    Article  ADS  Google Scholar 

  35. M. X. Zhang, C. Y. Pei, X. Du, Y. T. Cao, Q. Wang, J. F. Wu, Y. D. Li, Y. Zhao, C. H. Li, W. Z. Cao, S. H. Zhu, Q. Zhang, N. Yu, P. H. Cheng, J. K. Zhao, Y. L. Chen, H. J. Guo, L. X. Yang, and Y. P. Qi, arXiv: 2311.07423.

  36. H. Sakakibara, M. Ochi, H. Nagata, Y. Ueki, H. Sakurai, R. Matsumoto, K. Terashima, K. Hirose, H. Ohta, M. Kato, Y. Takano, and K. Kuroki, arXiv: 2309.09462.

  37. Y. H. Zhu, E. K. Zhang, B. Y. Pan, X. Chen, L. X. Chen, H. F. Ren, F. Y. Liu, J. J. Wang, D. H. Jia, H. L. Wo, Y. Q. Gu, Y. M. Gu, L. Ji, W. B. Wang, H. Y. Gou, Y. Shen, T. P. Ying, J. G. Guo, and J. Zhao, arXiv: 2311.07353.

  38. Q. Li, Y. J. Zhang, Z. N. Xiang, Y. Zhang, X. Zhu, and H. H. Wen, Chin. Phys. Lett. 41, 017401 (2024).

    Article  ADS  Google Scholar 

  39. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  40. W. Kohn, and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  Google Scholar 

  41. J. Zhang, H. Zheng, Y. S. Chen, Y. Ren, M. Yonemura, A. Huq, and J. F. Mitchell, Phys. Rev. Mater. 4, 083402 (2020).

    Article  Google Scholar 

  42. Z. Zhang, and M. Greenblatt, J. Solid State Chem. 117, 236 (1995).

    Article  ADS  Google Scholar 

  43. C. D. Ling, D. N. Argyriou, G. Wu, and J. J. Neumeier, J. Solid State Chem. 152, 517 (2000).

    Article  ADS  Google Scholar 

  44. F. Birch, Phys. Rev. 71, 809 (1947).

    Article  ADS  Google Scholar 

  45. M. K. Chan, C. J. Dorow, L. Mangin-Thro, Y. Tang, Y. Ge, M. J. Veit, G. Yu, X. Zhao, A. D. Christianson, J. T. Park, Y. Sidis, P. Steffens, D. L. Abernathy, P. Bourges, and M. Greven, Nat. Commun. 7, 10819 (2016).

    Article  ADS  Google Scholar 

  46. C. C. Tsuei, J. R. Kirtley, M. Rupp, J. Z. Sun, A. Gupta, M. B. Ketchen, C. A. Wang, Z. F. Ren, J. H. Wang, and M. Bhushan, Science 271, 329 (1996).

    Article  ADS  Google Scholar 

  47. J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B 82, 180520 (2010).

    Article  ADS  Google Scholar 

  48. Z. C. Wang, C. Y. He, S. Q. Wu, Z. T. Tang, Y. Liu, A. Ablimit, C. M. Feng, and G. H. Cao, J. Am. Chem. Soc. 138, 7856 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hualei Sun, Dao-Xin Yao or Meng Wang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12174454, 12304187, U213010013, 92165204, and 11974432), Guangdong Basic and Applied Basic Research Funds (Grant No. 2021B1515120015), Guangzhou Basic and Applied Basic Research Funds (Grant Nos. 202201011123, and 2024A04J6417), National Key Research and Development Program of China (Grant Nos. 2022YFA1402802, 2023YFA1406500, and 2023YFA1406002), Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (Grant No. 2022B1212010008), Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 23qnpy57), and Shenzhen International Quantum Academy. High-pressure synchrotron X-ray measurements were performed at the 4W2 High-Pressure Station, Beijing Synchrotron Radiation Facility, which is supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, and KJCX2-SW-N03).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, CQ., Huang, C. et al. Structural transition, electric transport, and electronic structures in the compressed trilayer nickelate La4Ni3O10. Sci. China Phys. Mech. Astron. 67, 117403 (2024). https://doi.org/10.1007/s11433-023-2329-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2329-x

Navigation