Skip to main content
Log in

The Effect of Refuge on Dermestes ater (Coleoptera: Dermestidae) Predation on Musca domestica (Diptera: Muscidae): Refuge for Prey or the Predator?

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

It is believed that habitat heterogeneity can change the extent of predator-prey interactions. Therefore, in this study we examined the effect of habitat heterogeneity (characterized here as an addition of refuge) on D. ater predation on M. domestica. Predation of D. ater on M. domestica larvae was carried out in experimental habitats with and without refuge, and examined at different prey densities. The number of prey eaten by beetles over 24 h of predator-prey interaction was recorded, and we investigated the strength of interaction between prey and predator in both experimental habitats by determining predator functional response. The mean number of prey eaten by beetles in the presence of refuge was significantly higher than in the absence of refuge. Females had greater weight gains than males. Logistic regression analyses revealed the type II functional response for both experimental habitats, even though data did not fit well into the random predator model. Results suggest that the addition of refuge in fact enhanced predation, as prey consumption increased in the presence of refuge. Predators kept in the presence of refuge also consumed more prey at high prey densities. Thus, we concluded that the addition of refuge was an important component mediating D. ater-M. domestica population interactions. Refuge actually acted as a refuge for predators from prey, since prey behaviors detrimental to predators were reduced in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  • Alto, B. W., Griswold, M. W., and Lounibos, L. P. (2005). Habitat complexity and sex-dependent predation of mosquito larvae in containers. Oecologia 146: 300–310.

    Article  PubMed  Google Scholar 

  • Axtell R. C., and Arends, J. J. (1990). Ecology and management of arthropod pests of poultry. Annu. Rev. Entomol. 35:101–126.

    Article  PubMed  CAS  Google Scholar 

  • Bai, M. G., and Mahadevappa, L. (1996). Management of Dermestes ater DeGeer (Coleoptera, Dermestidae) and Labia arachidis (Yersin) (Dermaptera, Labiidae) on silkworm Bombyx mori L. Pest. Manag. Econ. Zool. 2: 49–51.

    Google Scholar 

  • Bowman, D. D. (1995). Parasitology for Veterinarians. WB Saunders Company, Philadelphia.

    Google Scholar 

  • Clark, T. L., and Messina, F. J. (1998) Foraging behavior of lacewing larvae (Neuroptera: Chrysopidae) on plants with divergent architectures. J. Insect Behav. 11: 303–317.

    Article  Google Scholar 

  • Cloud, J. A., and Collison, C. H. (1986). Comparison of various poultry house litter components for hide beetle (Dermestes maculatus DeGeer) larval development in the laboratory. Poultry Sci. 65: 1911–1914.

    Google Scholar 

  • Coen, L. D., Heck, K. L., and Abele, L. G. (1981). Experiments on competition and predation among shrimps of seagrass meadows. Ecology 62: 1484–1493.

    Article  Google Scholar 

  • Cunha, C. L., and Lomônaco, C. (1996). Monitorização de inpacto ambiental provocado por dispersão de moscas em bairros adjacentes a uma granja avícola. An. Soc. Entomol. Brasil 25: 1–12.

    Google Scholar 

  • De Clercq, P., Mohaghegh, J., and Tirry, L. (2000). Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Biol. Control 18: 65–70.

    Article  Google Scholar 

  • Ferreira, M. J. M., and Lacerda, P. V. (1993). Muscóides sinantrópicos associados ao lixo urbano em Goiânia, GO. Rev. Brasil. Zool. 10: 185–195.

    Google Scholar 

  • Finke, D. L., and Denno, R. F. (2002). Intraguild predation diminished in complex-structured vegetation: Implications for prey suppression. Ecology 83: 643–652.

    Google Scholar 

  • Flynn, A. J., and Ritz, D. A. (1999). Effect of habitat complexity and predatory style on the capture success of fish feeding on aggregated prey. J. Mar. Biol. Ass. UK 79: 487–494.

    Article  Google Scholar 

  • Gause, G. F. (1934). The struggle for existence. Dover (Reprinted 1971), New York.

    Google Scholar 

  • Harwood, R. F., and James, M. T. (1979). Entomology in Human and Animal Health. Macmillan Publishing Cos. Inc., New York.

    Google Scholar 

  • Hoddle, M. S. (2003) The effect of prey species and environmental complexity on the functional response of Franklinothrips orizabensis: A test of the fractal foraging model. Ecol. Entomol. 28: 309–318.

    Article  Google Scholar 

  • Hohberg, K., and Traunspurger, W. (2005). Predator-prey interaction in soil food web: Functional response, size-dependent foraging efficiency, and the influence of soil texture. Biol. Fert. Soils 41: 419–427.

    Article  Google Scholar 

  • Holling, C. S. (1959). The components of predation as revealed by a study of small mammal predation of the European sawfly. Can. Entomol. 91: 293–320.

    Article  Google Scholar 

  • James, P. L., and Heck, K. L. (1994). The effects of habitat complexity and light intensity on ambush predators within a simulated seagrass habitat. J. Exp. Mar. Biol. Ecol. 176: 187–200.

    Article  Google Scholar 

  • Juliano, S. A. (2001). Nonlinear curve fitting: Predation and functional response curves. In Scheiner, S. M., and Gurevitch, J. (eds.), Design and Analysis of Ecological Experiments. Oxford University Press, New York, pp. 178–196.

    Google Scholar 

  • Kaiser, H. (1983). Small scale spatial heterogeneity influences predation success in an unexpected way: Model experiments on the functional response of predatory mites (Acarina). Oecologia 56: 249–256.

    Article  Google Scholar 

  • Kumar, P., Jayaprakas, C. A., Singh, B. D., and Sen-Gupta, K. (1988). Studies on the biology of Dermestes ater (Coleoptera, Dermestidae)—a pest of silkworm pupae and adults. Curr. Sci. 57: 1253.

    Google Scholar 

  • Legrand, A., and Barbosa, P. (2003). Plant morphological complexity impacts foraging efficiency of adult Coccinella septempunctata L. (Coleoptera: Coccinellidae). Environ. Entomol. 32: 1219–1226.

    Article  Google Scholar 

  • Levine, O. S., and Levine, M. M. (1991). Houseflies (Musca domestica) as mechanical vectors of Shigellosis. Rev. Infec. Dis. 13: 688–696.

    CAS  Google Scholar 

  • Li, H., and Reynolds, J. F. (1994). A simulation experiment to quantify spatial heterogeneity in categorical maps. Ecology 75: 2446–2455.

    Article  Google Scholar 

  • Lomônaco, C., and Prado, A. P. (1994). Estrutura comunitária e dinâmica populacional da fauna de dípteros e seus inimigos naturais em granjas avícolas. An. Soc. Entomol. Brasil 23: 71–80.

    Google Scholar 

  • Manatunge, J., Asaeda, T., and Priyadarshana, T. (2000). The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes. Env. Biol. Fish. 58: 425–438.

    Article  Google Scholar 

  • May, R. M. (1978). Host-parasitoid systems in patchy environments: A phenomenological model. J. Anim. Ecol. 47: 833–843.

    Article  Google Scholar 

  • McNair, J. N. (1986) The effects of refuges on predator-prey interactions: A reconsideration. Theor. Popul. Biol. 29: 38–63.

    Article  PubMed  CAS  Google Scholar 

  • Menezes, L. C. C. R., Rossi, M. N., and Reigada, C. (2005). Consequences of refuge for the functional response of Dermestes ater (Coleoptera: Dermestidae) to Musca domestica (Diptera: Muscidae). Popul. Ecol. 47: 213–219.

    Article  Google Scholar 

  • Messina, F. J., and Hanks, J. B. (1998). Host plant alters the shape of the functional response of an aphid predator (Coleoptera: Coccinelidae). Environ. Entomol. 27: 1196–1202.

    Google Scholar 

  • Murdoch, W. W., and Briggs, C. J. (1996). Theory for biological control: Recent developments. Ecology 77: 2001–2013.

    Article  Google Scholar 

  • Poggiale, J. C., and Auger, P. (2004). Impact of spatial heterogeneity on a predator-prey system dynamics. C. R. Biol. 327: 1058–1063.

    PubMed  Google Scholar 

  • Ranta, E., Lundberg, P., and Kaitala, V. (2006). Ecology of Populations: Ecology, Biodiversity and Conservation. Cambridge University Press, UK.

    Google Scholar 

  • Roda, A., Nyrop, J., Dicke, M., and English-Loeb, G. (2000). Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation. Oecologia 125: 428–435.

    Article  Google Scholar 

  • Rogers, D. (1972). Random search and insect population models. J. Anim. Ecol. 41: 369–383.

    Article  Google Scholar 

  • Royama, T. (1971). A comparative study of models for predation and parasitism. Res. Popul. Ecol. Suppl. 1: 1–91.

    Article  Google Scholar 

  • SAS (2001). SAS/STAT Software; version 8.2. SAS Institute, Cary, North Carolina.

    Google Scholar 

  • Savage, C. E., and Jones, R. C. (2003). The survival of avian reoviruses on materials associated with the poultry house environment. Avian. Pathol. 32: 419–425.

    Article  PubMed  Google Scholar 

  • Savino, J. F., and Stein, R. A. (1982). Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation. Trans. Am. Fish. Soc. 111: 255–266.

    Article  Google Scholar 

  • Smith, K. G. V. (1986). A Manual of Forensic Entomology. University Printing House, Oxford.

    Google Scholar 

  • Spitzer, P. M., Mattila, J., and Heck, K. L. (2000). The effects of vegetation density on the relative growth rates of juvenile pinfish, Lagodon rhomboides (Linneaus), in Big Lagoon, Florida. J. Exp. Mar. Biol. Ecol. 244: 67–86.

    Article  Google Scholar 

  • Trexler, J. C., McCulloch, C. E. and Travis, J. (1988). How can the functional response best be determined? Oecologia 76: 206–214.

    Article  Google Scholar 

  • Turchin, P. (2003). Complex population dynamics: A theoretical empirical synthesis. Monographs in Population Biology (35), Princeton University Press, Princeton.

    Google Scholar 

  • Veer, V., Negi, B. K., and Rao, K. M. (1996). Dermestid beetles and some other insect pests associated with stored silkworm cocoons in India, including a world list of dermestid species found attacking this commodity. J. Stored. Prod. Res. 32: 69–89.

    Article  Google Scholar 

  • Wellnitz, T., and Poff, N. L. (2001). Functional redundancy in heterogeneous environments: Implications for conservation. Ecol. Lett. 4: 177–179.

    Article  Google Scholar 

  • Wise, D. H. (1993). Spiders in Ecological Webs. Cambridge University Press, Cambridge.

    Google Scholar 

  • Yamamura, K. (1998). Stabilization effects of spatial aggregation of vectors in plant disease systems. Res. Popul. Ecol. 40: 227–238.

    Google Scholar 

  • Zar, J. H. (1999). Biostatistical Analysis. Prentice Hall, Upper Saddle River, New Jersey.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the PhD student Carolina Reigada and Professor James Welsh for providing statistical advice and for revising the text of the manuscript, respectively. L. C. C. R. Menezes, and M. N. Rossi are particularly grateful to Fapesp (Fundação de Amparo à Pesquisa do Estado de São Paulo) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo N. Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menezes, L.C.C.R., Rossi, M.N. & Godoy, W.A.C. The Effect of Refuge on Dermestes ater (Coleoptera: Dermestidae) Predation on Musca domestica (Diptera: Muscidae): Refuge for Prey or the Predator?. J Insect Behav 19, 717–729 (2006). https://doi.org/10.1007/s10905-006-9056-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-006-9056-x

KEY WORDS:

Navigation