Skip to main content
Log in

Particle-Reinforced Polymer Matrix Composites (PMC) Fabricated by 3D Printing

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This manuscript explores the applications and advancements in three-dimensional (3D) printing with a focus on incorporating additive particles with unique properties into polymer composites. The benefits of 3D printing, such as design flexibility and rapid prototyping, are discussed along with the challenges of incorporating reinforcement materials with the polymer matrix. The review emphasizes the importance of achieving a homogeneous distribution of particles in the polymer matrix for filament fabrication in 3D printers. Thus, this review introduces the optimum method to produce a homogenous distribution of particles in the polymer matrix for fabricating filament for a FDM 3D printer. The use of filler particles enhances the properties of 3D printed parts, increasing their density, stiffness, and tribological performance, thereby expanding their applicability in industrial and biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Reference 31

Fig. 4
Fig. 5
Fig. 6

Reproduced with permission from Reference 62

Fig. 7

Reproduced with permission from Reference 62

Fig. 8

Reproduced with permission from Reference 63

Fig. 9

Reproduced with permission from Reference 64

Fig. 10

Reproduced with permission from Reference 67

Fig. 11
Fig. 12

Reproduced with permission from Reference 71

Fig. 13

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. M. Khedr, A. Hamada, W. Abd-Elaziem, M. Jaskari, M. Elsamanty, J. Kömi, A. Järvenpää, Effects of wall thickness variation on hydrogen embrittlement susceptibility of additively manufactured 316L stainless steel with lattice Auxetic structures. Materials 16(6), 2523 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. X. Luo, H. Cheng, Wu. Xin, Nanomaterials reinforced polymer filament for fused deposition modeling: a state-of-the-art review. Polymers 15(14), 2980 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. H.K. Sezer, O. Eren, FDM 3D printing of MWCNT reinforced ABS nano-composite parts with enhanced mechanical and electrical properties. J. Manuf. Process. 37, 339–347 (2019)

    Article  Google Scholar 

  4. K. Takagishi, S. Umezu, Development of the improving process for the 3D printed structure. Sci. Rep. 7(1), 1–10 (2017)

    Article  CAS  Google Scholar 

  5. O.T. Bafakeeh, W.M. Shewakh, A. Abu-Oqail, W. Abd-Elaziem, M. Abdel Ghafaar, M. Abu-Okail, Synthesis and Characterization of hybrid fiber-reinforced polymer by adding ceramic nanoparticles for aeronautical structural applications. Polymers 13(23), 4116 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. D. Bekas, Y. Hou, Y. Liu, A. Panesar, 3D printing to enable multifunctionality in polymer-based composites: a review. Composites B 179, 107540 (2019)

    Article  CAS  Google Scholar 

  7. T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites B 143, 172–196 (2018)

    Article  CAS  Google Scholar 

  8. B.I. Oladapo, S. Zahedi, A. Adeoye, 3D printing of bone scaffolds with hybrid biomaterials. Composites B 158, 428–436 (2019)

    Article  CAS  Google Scholar 

  9. A. Ambrosi, M. Pumera, 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 45(10), 2740–2755 (2016)

    Article  PubMed  CAS  Google Scholar 

  10. J.-Y. Lee, J. An, C.K. Chua, Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 7, 120–133 (2017)

    Article  Google Scholar 

  11. H. Guo, R. Lv, S. Bai, Recent advances on 3D printing graphene-based composites. Nano Mater. Sci. 1(2), 101–115 (2019)

    Article  Google Scholar 

  12. A.D. Valino, J.R.C. Dizon, A.H. Espera Jr., Q. Chen, J. Messman, R.C. Advincula, Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci. 98, 101162 (2019)

    Article  CAS  Google Scholar 

  13. J. Saroia, Y. Wang, Q. Wei, M. Lei, X. Li, Y. Guo, K. Zhang, A review on 3D printed matrix polymer composites: its potential and future challenges. Int. J. Adv. Manuf. Technol. 106(5), 1695–1721 (2020)

    Article  Google Scholar 

  14. X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: a review and prospective. Composites B 110, 442–458 (2017)

    Article  CAS  Google Scholar 

  15. S. Park, W. Shou, L. Makatura, W. Matusik, K.K. Fu, Investigation of LCD 3D printing of carbon fiber composites by utilizing central composite design. Matter 5(1), 43–76 (2022)

    Article  CAS  Google Scholar 

  16. A. Nikhil, 3D Printing Processes - Vat Photo polymerisation (Part 3/8), Engineers Garage, January 10, 2017.

  17. A. Bagheri, J. Jin, Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 1(4), 593–611 (2019)

    Article  CAS  Google Scholar 

  18. M. Layani, X. Wang, S. Magdassi, Novel materials for 3D printing by photopolymerization. Adv. Mater. 30(41), 1706344 (2018)

    Article  Google Scholar 

  19. A. Medellin, W. Du, G. Miao, J. Zou, Z. Pei, C. Ma, Vat photopolymerization 3D printing of nanocomposites: a literature review. J. Micro- Nano-Manuf. 7(3), 031006 (2019)

    Article  CAS  Google Scholar 

  20. Y. Bao, N. Paunović, J.C. Leroux, Challenges and opportunities in 3D printing of biodegradable medical devices by emerging photopolymerization techniques. Adv. Funct. Mater. 32(15), 2109864 (2022)

    Article  CAS  Google Scholar 

  21. A. Gallastegui, A. Dominguez-Alfaro, L. Lezama, N. Alegret, M. Prato, M.L. Gómez, D. Mecerreyes, Fast visible-light photopolymerization in the presence of multiwalled carbon nanotubes: toward 3D printing conducting nanocomposites. ACS Macro Lett. 11(3), 303–309 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. E. Geisler, M. Lecompère, O. Soppera, 3D printing of optical materials by processes based on photopolymerization: materials, technologies, and recent advances. Photonics Res. 10(6), 1344–1360 (2022)

    Article  Google Scholar 

  23. M.G.M. Benal, P.K. GS, V. Tambrallimath, G. HR, T.Y. Khan, A.A. Rajhi, M.A.A. Baig, Influence of short glass fibre reinforcement on mechanical properties of 3D printed ABS-based polymer composites. Polymers 14(6), 1182 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  24. F.N. Chaudhry, S.I. Butt, A. Mubashar, A.B. Naveed, S.H. Imran, Z. Faping, Effect of carbon fibre on reinforcement of thermoplastics using FDM and RSM. J. Thermoplast. Compos. Mater. 35(3), 352–374 (2022)

    Article  CAS  Google Scholar 

  25. F. Safari, A. Kami, V. Abedini, 3D printing of continuous fiber reinforced composites: a review of the processing, pre- and post-processing effects on mechanical properties. Polym. Polym. Compos. 30, 09673911221098734 (2022)

    CAS  Google Scholar 

  26. I. Blanco, G. Cicala, G. Recca, C. Tosto, Specific heat capacity and thermal conductivity measurements of PLA-based 3D-printed parts with milled carbon fiber reinforcement. Entropy 24(5), 654 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. M.S. Saharudin, J. Hajnys, T. Kozior, D. Gogolewski, P. Zmarzły, Quality of surface texture and mechanical properties of PLA and PA-based material reinforced with carbon fibers manufactured by FDM and CFF 3D printing technologies. Polymers 13(11), 1671 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. M. Heidari-Rarani, M. Rafiee-Afarani, A. Zahedi, Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Composites B 175, 107147 (2019)

    Article  CAS  Google Scholar 

  29. M.N. Ahmad, M.K. Wahid, N.A. Maidin, M.H. AbRahman, M.H. Osman, Mechanical characteristics of oil palm fiber reinforced thermoplastics as filament for fused deposition modeling (FDM). Adv. Manuf. 8(1), 72–81 (2020)

    Article  CAS  Google Scholar 

  30. N. Su, R. Pierce, C. Rudd, X. Liu, Comprehensive investigation of reclaimed carbon fibre reinforced polyamide (rCF/PA) filaments and FDM printed composites. Composites B 233, 109646 (2022)

    Article  CAS  Google Scholar 

  31. Q. Wang, J. Sun, Q. Yao, C. Ji, J. Liu, Q. Zhu, 3D printing with cellulose materials. Cellulose 25, 4275–4301 (2018)

    Article  CAS  Google Scholar 

  32. G. Griffini, M. Invernizzi, M. Levi, G. Natale, G. Postiglione, S. Turri, 3D-printable CFR polymer composites with dual-cure sequential IPNs. Polymer 91, 174–179 (2016)

    Article  CAS  Google Scholar 

  33. A. Shahzad, I. Lazoglu, Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges. Composites B 225, 109249 (2021)

    Article  CAS  Google Scholar 

  34. K. Osouli-Bostanabad, K. Adibkia, Made-on-demand, complex and personalized 3D-printed drug products. BioImpacts 8(2), 77 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. J.C. Capricho, B. Fox, N. Hameed, Multifunctionality in epoxy resins. Polym. Rev. 60(1), 1–41 (2020)

    Article  CAS  Google Scholar 

  36. C.C. Spackman, C.R. Frank, K.C. Picha, J. Samuel, 3D printing of fiber-reinforced soft composites: process study and material characterization. J. Manuf. Process. 23, 296–305 (2016)

    Article  Google Scholar 

  37. K. Chen, X. Kuang, V. Li, G. Kang, H.J. Qi, Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing. Soft Matter 14(10), 1879–1886 (2018)

    Article  PubMed  CAS  Google Scholar 

  38. D.A. Rau, M. Forgiarini, C.B. Williams, Hybridizing Direct Ink Write and mask-projection Vat Photopolymerization to enable additive manufacturing of high viscosity photopolymer resins. Addit. Manuf. 42, 101996 (2021)

    CAS  Google Scholar 

  39. B.G. Compton, J.A. Lewis, 3D-printing of lightweight cellular composites. Adv. Mater. 26(34), 5930–5935 (2014)

    Article  PubMed  CAS  Google Scholar 

  40. https://en.wikipedia.org/wiki/Selective_laser_sintering#cite_note-8. Accessed 5 June 2023.

  41. S. Lekurwale, T. Karanwad, S. Banerjee, Selective laser sintering (SLS) of 3D printlets using a 3D printer comprised of IR/red-diode laser. Ann. 3D Print. Med. 6, 100054 (2022)

    Article  Google Scholar 

  42. X. Chen, J. Yin, X. Liu, B. Pei, J. Huang, X. Peng, A. Xia, L. Huang, Z. Huang, Effect of laser power on mechanical properties of SiC composites rapidly fabricated by selective laser sintering and direct liquid silicon infiltration. Ceram. Int. 48(13), 19123–19131 (2022)

    Article  CAS  Google Scholar 

  43. F. Fina, A. Goyanes, S. Gaisford, A.W. Basit, Selective laser sintering (SLS) 3D printing of medicines. Int. J. Pharm. 529(1–2), 285–293 (2017)

    Article  PubMed  CAS  Google Scholar 

  44. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Review of selective laser melting: materials and applications. Appl. Phys. Rev. 2(4), 041101 (2015)

    Article  Google Scholar 

  45. J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J. Mater. Sci. Technol. 35(2), 270–284 (2019)

    Article  CAS  Google Scholar 

  46. H. Jia, H. Sun, H. Wang, Y. Wu, H. Wang, Scanning strategy in selective laser melting (SLM): a review. Int. J. Adv. Manuf. Technol. 113(9), 2413–2435 (2021)

    Article  Google Scholar 

  47. W. Abdel-Aziem, S. Elkatatny, A.-E. Abd-Elaziem, M. Khedr, M.A. Abd El-baky, M.A. Hassan, M. Abu-Okail, M. Mohammed, A. Järvenpää, T. Allam, on the current research progress of metallic materials fabricated by laser powder bed fusion process: a review. J. Mater. Res. Technol. 20, 681–707 (2022)

    Article  CAS  Google Scholar 

  48. M. Ziaee, N.B. Crane, Binder jetting: a review of process materials, and methods. Addit. Manuf. 28, 781–801 (2019)

    CAS  Google Scholar 

  49. A. Lores, N. Azurmendi, I. Agote, E. Zuza, A review on recent developments in binder jetting metal additive manufacturing: materials and process characteristics. Powder Metall. 62(5), 267–296 (2019)

    Article  CAS  Google Scholar 

  50. J. Park, M.J. Tari, H.T. Hahn, Characterization of the laminated object manufacturing (LOM) process. Rapid Prototyp. J. 6, 36–50 (2000)

    Article  Google Scholar 

  51. D.D. Chung, Materials for thermal conduction. Appl. Therm. Eng. 21(16), 1593–1605 (2001)

    Article  CAS  Google Scholar 

  52. S.I. Asiya et al., Sustainable preparation of gold nanoparticles via green chemistry approach for biogenic applications. Mater. Today Chem. 17, 100327 (2020)

    Article  Google Scholar 

  53. K. Pal et al., Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: optoelectronics and biotechnological aspects. Crit. Rev. Solid State Mater. Sci. 46(5), 385–449 (2021)

    Article  CAS  Google Scholar 

  54. H. Dommati et al., A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification. RSC Adv. 9, 16869 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. N. Nath et al., Carbon nanostructure embedded novel sensor implementation for detection of aromatic volatile organic compounds: an organized review. ACS Omega 8, 4436–4452 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. K. Pal et al., A critical review on multifunctional smart materials ‘nanographene’ emerging avenue: nano-imaging and biosensor applications. Crit. Rev. Solid State Mater. Sci. 47(5), 691–707 (2022)

    Article  CAS  Google Scholar 

  57. H. Chung, S. Das, Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering. Mater. Sci. Eng. A 437(2), 226–234 (2006)

    Article  Google Scholar 

  58. A.R. Torrado Perez, D.A. Roberson, R.B. Wicker, Failure analysis and anisotropy evaluation of 3D-printed tensile test specimens of different geometries and print raster patterns. J. Fail. Anal. Prev. 14(3), 343–353 (2014)

    Article  Google Scholar 

  59. R. Singh, P. Bedi, F. Fraternali, I. Ahuja, Effect of single particle size, double particle size and triple particle size Al2O3 in Nylon-6 matrix on mechanical properties of feed stock filament for FDM. Composites B 106, 20–27 (2016)

    Article  CAS  Google Scholar 

  60. Y. Zhang, L. Hao, M. Savalani, R.A. Harris, K. Tanner, Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. J. Biomed. Mater. Res. A 86(3), 607–616 (2008)

    Article  PubMed  CAS  Google Scholar 

  61. N. Sa’ude, M. Ibrahim, M.H.I. Ibrahim, Mechanical properties of highly filled iron-ABS composites in injection molding for FDM wire filament. Mater. Sci. Forum 733–774, 448–453 (2014)

    Google Scholar 

  62. N. Vidakis et al., Fused filament fabrication 3D printed polypropylene/alumina nanocomposites: effect of filler loading on the mechanical reinforcement. Polym. Test. 109, 107545 (2022)

    Article  CAS  Google Scholar 

  63. P. Wang et al., Effect of carbon nanotubes on the interface evolution and dielectric properties of polylactic acid/ethylene–vinyl acetate copolymer nanocomposites. Adv. Compos. Hybrid Mater. 5, 1100–1110 (2022)

    Article  CAS  Google Scholar 

  64. K. Boparai, R. Singh, H. Singh, Comparison of tribological behavior for Nylon6-Al Al2O3 and ABS parts fabricated by fused deposition modelling. Virtual and Phys. Prototyp. 10(2), 59–66 (2015)

    Article  Google Scholar 

  65. N. Vidakis, M. Petousis, E. Velidakis, L. Tzounis, N. Mountakis, J. Kechagias, S. Grammatikos, Optimization of the filler concentration on fused filament fabrication 3D printed polypropylene with titanium dioxide nanocomposites. Materials 14(11), 3076 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. N. Vidakis, M. Petousis, E. Velidakis, N. Mountakis, L. Tzounis, M. Liebscher, S.A. Grammatikos, Enhanced mechanical, thermal and antimicrobial properties of additively manufactured polylactic acid with optimized nano silica content. Nanomaterials 11(4), 1012 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Y. Jia, H. He, Y. Geng, B. Huang, X. Peng, High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing. Compos. Sci. Technol. 145, 55–61 (2017)

    Article  CAS  Google Scholar 

  68. U. Kalsoom, A. Peristyy, P. Nesterenko, B. Paull, A 3D printable diamond polymer composite: a novel material for fabrication of low cost thermally conducting devices. RSC Adv. 6(44), 38140–38147 (2016)

    Article  CAS  Google Scholar 

  69. F. Castles, D. Isakov, A. Lui, Q. Lei, C. Dancer, Y. Wang, J. Janurudin, S. Speller, C. Grovenor, P.S. Grant, High-field high-repetition-rate sources for the coherent THz control of matter. Sci. Rep. 6(1), 1–8 (2016)

    Google Scholar 

  70. S.W. Kwok, K.H.H. Goh, Z.D. Tan, S.T.M. Tan, W.W. Tjiu, J.Y. Soh, Z.J.G. Ng, Y.Z. Chan, H.K. Hui, K.E.J. Goh, Electrically conductive filament for 3D-printed circuits and sensors. Appl. Mater. Today 9, 167–175 (2017)

    Article  Google Scholar 

  71. A. Kania, K. Berent, T. Mazur, M. Sikora, 3D printed composites with uniform distribution of Fe3O4 nanoparticles and magnetic shape anisotropy. Addit. Manuf. 46, 102149 (2021)

    CAS  Google Scholar 

  72. S. Kumar, R. Singh, M. Singh, Multi-material 3D printed PLA/PA6-TiO2 composite matrix: rheological, thermal, tensile, morphological and 4D capabilities. Adv. Mater. Process. Technol. 8(2), 2329–2348 (2022)

    Google Scholar 

  73. S. Tsai, D. Botts, J. Plouff, Effects of particle properties on the rheology of concentrated noncolloidal suspensions. J. Rheol. 36(7), 1291–1305 (1992)

    Article  CAS  Google Scholar 

  74. M. Nikzad, S.H. Masood, I. Sbarski, Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater. Des. 32(6), 3448–3456 (2011)

    Article  CAS  Google Scholar 

  75. S. Masood, W. Song, Thermal characteristics of a new metal/polymer material for FDM rapid prototyping process. Assem. Autom. 25, 309 (2005)

    Article  Google Scholar 

  76. M.A. Ryder, D.A. Lados, G.S. Iannacchione, A.M. Peterson, Fabrication and properties of novel polymer-metal composites using fused deposition modeling. Compos. Sci. Technol. 158, 43–50 (2018)

    Article  CAS  Google Scholar 

  77. J. Liu, Z. Li, Y. Yu, P. Wang, 3D-printed polymer composites based upon low melting point alloys filled into polylactic acid. J. Phys. 2002, 012008 (2021)

    CAS  Google Scholar 

  78. S. Singh, S. Ramakrishna, R. Singh, Material issues in additive manufacturing: a review. J. Manuf. Process. 25, 185–200 (2017)

    Article  Google Scholar 

  79. K. Vishal, K. Rajkumar, P. Sabarinathan, V. Dhinakaran, Mechanical and wear characteristics investigation on 3D printed silicon filled poly (lactic acid) biopolymer composite fabricated by fused deposition modeling. SILICON 14, 9379 (2022)

    Article  CAS  Google Scholar 

  80. B. Nagarajan, M. Arshad, A. Ullah, P. Mertiny, A.J. Qureshi, dditive manufacturing ferromagnetic polymers using stereolithography – Materials and process development. Manuf. Lett. 21, 12–16 (2019)

    Article  Google Scholar 

  81. V.S. Vakharia, L. Kuentz, A. Salem, M.C. Halbig, J.A. Salem, M. Singh, Additive manufacturing and characterization of metal particulate reinforced polylactic acid (PLA) polymer composites. Polymers 13(20), 3545 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. S. Masood, W. Song, Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater. Des. 25(7), 587–594 (2004)

    Article  CAS  Google Scholar 

  83. S.J. Kalita, S. Bose, H.L. Hosick, A. Bandyopadhyay, Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater. Sci. Eng. C 23(5), 611–620 (2003)

    Article  Google Scholar 

  84. F.S. Senatov, K.V. Niaza, M.Y. Zadorozhnyy, A. Maksimkin, S. Kaloshkin, Y. Estrin, Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J. Mech. Behav. Biomed. Mater. 57, 139–148 (2016)

    Article  PubMed  CAS  Google Scholar 

  85. S. Hwang, E.I. Reyes, K.-S. Moon, R.C. Rumpf, N.S. Kim, Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J. Electron. Mater. 44(3), 771–777 (2015)

    Article  CAS  Google Scholar 

  86. C.M. Shemelya, A. Rivera, A.T. Perez, C. Rocha, M. Liang, X. Yu, C. Kief, D. Alexander, J. Stegeman, H. Xin, Mechanical, electromagnetic, and X-ray shielding characterization of a 3D printable Tungsten-polycarbonate polymer matrix composite for space-based applications. J. Electron. Mater. 44(8), 2598–2607 (2015)

    Article  CAS  Google Scholar 

  87. N. Ayrilmis, M. Kariz, J.H. Kwon, M. Kitek Kuzman, Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials. Int. J. Adv. Manuf. Technol. 102(5), 2195–2200 (2019)

    Article  Google Scholar 

  88. A.H. Espera Jr., A.D. Valino, J.O. Palaganas, L. Souza, Q. Chen, R.C. Advincula, Studies on 3D printability of novel impact modified nylon 6: experimental investigations and performance evaluation. Macromol. Mater. Eng. 304(4), 1800718 (2019)

    Article  Google Scholar 

  89. D. Podstawczyk, D. Skrzypczak, X. Połomska, A. Stargała, A. Witek-Krowiak, A. Guiseppi-Elie, Z. Galewski, Preparation of antimicrobial 3D printing filament: in situ thermal formation of silver nanoparticles during the material extrusion. Polym. Compos. 41(11), 4692–4705 (2020)

    Article  CAS  Google Scholar 

  90. S.K. Jain, Y. Tadesse, Fabrication of polylactide/carbon nanopowder filament using melt extrusion and filament characterization for 3D printing. Int. J. Nanosci. 18(05), 1850026 (2019)

    Article  Google Scholar 

  91. Q. Chen, J.D. Mangadlao, J. Wallat, A. De Leon, J.K. Pokorski, R.C. Advincula, 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl. Mater. Interfaces 9(4), 4015–4023 (2017)

    Article  PubMed  CAS  Google Scholar 

  92. C.T. Seng, S.Y. Eh Noum, S.K. Sivanesan, L.-J. Yu, Reduction of hygroscopicity of PLA filament for 3D printing by introducing nano silica as filler, in AIP Conference Proceedings (AIP Publishing LLC, 2020), p. 020024

  93. J. Liu, J. Ye, F. Momin, X. Zhang, A. Li, Nonparametric bayesian framework for material and process optimization with nanocomposite fused filament fabrication. Addit. Manuf. 54, 102765 (2022)

    CAS  Google Scholar 

  94. N. Vidakis, M. Petousis, E. Velidakis, N. Mountakis, P.E. Fischer-Griffiths, S. Grammatikos, L. Tzounis, Fused filament fabrication three-dimensional printing multi-functional of polylactic acid/carbon black nanocomposites. C 7(3), 52 (2021)

    CAS  Google Scholar 

  95. S. Dul, L.G. Ecco, A. Pegoretti, L. Fambri, Graphene/carbon nanotube hybrid nanocomposites: effect of compression molding and fused filament fabrication on properties. Polymers 12(1), 101 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. A.C. de Leon, Q. Chen, N.B. Palaganas, J.O. Palaganas, J. Manapat, R.C. Advincula, High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 103, 141–155 (2016)

    Article  Google Scholar 

  97. W. Xu, S. Jambhulkar, Y. Zhu, D. Ravichandran, M. Kakarla, B. Vernon, D.G. Lott, J.L. Cornella, O. Shefi, G. Miquelard-Garnier, 3D printing for polymer/particle-based processing: a review. Composites B 223, 109102 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Walaa Abdelaziem would like to acknowledge the Technology Innovation Commercialization Office (TICO) at Zagazig University in Egypt for supporting this project. Also, Dr. Mahmoud Khedr would like to express his sincere thanks for the financial assistance from the Finnish Foundation for Technology Promotion in Finland.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

WA-E: Idea, Original draft preparation, Investigation, Reviewing and Editing, Supervision. MK: Original draft preparation, Reviewing and Editing. A-EA-E: Original draft preparation, Reviewing and Editing. MMAA: Original draft preparation, Reviewing and Editing. AAM: Original draft preparation, Reviewing and Editing. HMY: Original draft preparation, Reviewing and Editing of final version. WMD: Reviewing and Editing of final version, resources and funding. MAAE: Idea, Original draft preparation, Investigation, Reviewing and Editing, Supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Walaa Abd-Elaziem or Walid M. Daoush.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Informed Consent

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elaziem, W., Khedr, M., Abd-Elaziem, AE. et al. Particle-Reinforced Polymer Matrix Composites (PMC) Fabricated by 3D Printing. J Inorg Organomet Polym 33, 3732–3749 (2023). https://doi.org/10.1007/s10904-023-02819-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02819-1

Keywords

Navigation