Skip to main content
Log in

Process optimization and adsorption modeling using hierarchical ZIF-8 modified with Lanthanum and Copper for sulfate uptake from aqueous solution: Kinetic, Isotherm and Thermodynamic studies

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the current study, the hieratical zeolitic imidazole framework 8 (H/ZIF-8) and bimetallic H/ZIF-8, H/ZIF-8@La and H/ZIF-8@Cu, were prepared with a simple and green method using water as a solvent. Process parameters (temperature and time of crystallization), as well as compositional parameters (amount of 2-Methylimidazole and 2-(methylamino)ethanol), were studied. H/ZIF-8 samples were characterized with XRD, EDS, FE-SEM, TGA/DTA, FTIR, N2 isotherms, and their performance was evaluated for sulfate uptake from aqueous media. An experimental design was utilized in this study to optimize the independent variables using central composite design (CCD) under the response surface methodology (RSM) method. A significant agreement between the models and experimental data was verified by analysis of variance (ANOVA). The adsorption equilibrium models of Langmuir, Jovanovic, Freundlich, and Temkin isotherms were evaluated and the results described that the Langmuir model was the best with the experimental data. Different kinetic models were estimated and found that pseudo-second-order kinetic data were well-fitted for removal reaction. The determination of different thermodynamic parameters reflected that the sulfate uptake was spontaneous and feasible and that three H/ZIF-8 samples had an endothermic nature. The adsorption on H/ZIF-8 samples was not significantly influenced by the competing anions of nitrate, chloride and fluoride but phosphate displayed slightly greater negative effects. The used H/ZIF-8 samples could be regenerated and reused in eight consecutive cycles with a proper desorption agent. The results of sulfate removal from a real sample revealed that using H/ZIF-8 and two bimetallic H/ZIF-8 samples for sulfate removal from polluted waters is a promising alternative for sulfate recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Danil de Namor, Water Sci Tech-W Sup 7, 33–39 (2007)

    Article  CAS  Google Scholar 

  2. A. Roshan, M. Kumar, J. Environ. Manag. 268, 110663 (2020)

    Article  Google Scholar 

  3. C.L. Moe, R.D. Rheingans, J. Water Health 4, 41–57 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. A.G. Leonel, A.A.P. Mansur, H.S. Mansur, Water Res. 190, 116693 (2021)

    Article  CAS  PubMed  Google Scholar 

  5. N. Kumar, D. Sinha, Int. J. Environ. Sci. 1, 253–259 (2010)

    CAS  Google Scholar 

  6. Z. Fang, Y. Gao, N. Bolan, S.M. Shaheen, S. Xu, X. Wu, X. Xu, H. Hu, J. Lin, F. Zhang, J. Li, J. Rinklebe, H. Wang, Chem. Eng. J. 390, 124611 (2020)

    Article  CAS  Google Scholar 

  7. S. Alrumman, S. Keshk, A. El Kott, Am. J. Enviro. Eng, 88–98 (2016)

  8. M. Chen, C.T. Jafvert, Y. Wu, X. Cao, N.P. Hankins, Chem. Eng. J. 398, 125413 (2020)

    Article  CAS  Google Scholar 

  9. L.C. Reyes-Alvarado, N.N. Okpalanze, E.R. Rene, E. Rustrian, E. Houbron, G. Esposito, P.N. Lens, J. Environ. Manag. 200, 407–415 (2017)

    Article  CAS  Google Scholar 

  10. C. Donga, S.B. Mishra, A.S. Abd-El-Aziz, A.K. Mishra, J. Inorg. Organomet. Polym. Mater. 1-18 (2020)

  11. J.J.M. Geurts, J.M. Sarneel, B.J.C. Willers, J.G.M. Roelofs, J.T.A. Verhoeven, L.P.M. Lamers, Environ. Pollut. 157, 2072–2081 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. H. Runtti, E.-T. Tolonen, S. Tuomikoski, T. Luukkonen, U. Lassi, Environ. Res. 167, 207–222 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. C. Rodrigues, D. Núñez-Gómez, H.V.D.M. Follmann, D.D. Silveira, M.E. Nagel-Hassemer, F.R. Lapolli, M.Á. Lobo-Recio, J. Hazard. Mater. 122893 (2020)

  14. M. Khabazipour, M. Anbia, Ind. Eng. Chem. Res. 58, 22133–22164 (2019)

    Article  CAS  Google Scholar 

  15. L. Wu, Z. Yan, J. Li, S. Huang, Z. Li, M. Shen, Y. Peng, Environ. Pollut. 259, 113763 (2020)

    Article  CAS  PubMed  Google Scholar 

  16. D. Navamani Kartic, B.C. Aditya Narayana, M. Arivazhagan, J. Environ. Manag. 206, 69–76 (2018)

    Article  CAS  Google Scholar 

  17. T. Chen, Q. Wang, J. Lyu, P. Bai, X. Guo, Sep. Purif. Technol. 231, 115930 (2020)

    Article  CAS  Google Scholar 

  18. C. Zhao, T. Zhang, G. Hu, J. Ma, R. Song, J. Li, J. Membr. Sci. 118176 (2020)

  19. G. Chen, H. Liu, Chem. Eng. J. 396, 125136 (2020)

    Article  CAS  Google Scholar 

  20. A. Tuszynska, K. Kolecka, B. Quant, Ecol. Eng. 53, 321–328 (2013)

    Article  Google Scholar 

  21. P. Mandal, A.K. Gupta, B.K. Dubey, J Water Process Eng. 33, 101119 (2020)

    Article  Google Scholar 

  22. W. Tang, D. He, C. Zhang, T.D. Waite, Water Res. 121, 302–310 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman, Bioresour. Technol. 160, 191–202 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. C.V. Lazaratou, D.V. Vayenas, D. Papoulis, Appl. Clay Sci. 185, 105377 (2020)

    Article  CAS  Google Scholar 

  25. B. Kamarehie, Z. Noraee, A. Jafari, M. Ghaderpoori, M.A. Karami, A. Ghaderpoury, Data Brief 20, 799–804 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  26. S. Salehi, M. Hosseinifard, Cellul. 1-25 (2020)

  27. X. Castillo, J. Pizarro, C. Ortiz, H. Cid, M. Flores, E. De Canck, P. Van Der Voort, Microporous Mesoporous Mater. 272, 184–192 (2018)

    Article  CAS  Google Scholar 

  28. H. Ao, W. Cao, Y. Hong, J. Wu, L. Wei, Sci. Total Environ. 708, 135092 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. P. Suresh Kumar, L. Korving, K.J. Keesman, M.C.M. van Loosdrecht, G.-J. Witkamp, Chem. Eng. J. 358, 160–169 (2019)

    Article  CAS  Google Scholar 

  30. X. Li, Y. Kuang, J. Chen, D. Wu, J. Colloid Interface Sci. 574, 197–206 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. M.R. Faradonbeh, A.A. Dadkhah, A. Rashidi, S. Tasharofi, F. Mansourkhani, J. Inorg. Organomet. Polym. Mater. 28, 829–836 (2018)

    Article  Google Scholar 

  32. S. Salehi, S. Mandegarzad, M. Anbia, J. Alloys Compd. 812, 152051 (2020)

    Article  CAS  Google Scholar 

  33. S. Salehi, M. Anbia, F. Razavi, Environ. Prog. Sustain. Energy, e13302

  34. S. Salehi, M. Anbia, Appl. Organomet. Chem. 32, e4390 (2018)

    Article  Google Scholar 

  35. M. Ding, R.W. Flaig, H.-L. Jiang, O.M. Yaghi, Chem. Soc. Rev. 48, 2783–2828 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. A. Azhar, Y. Li, Z. Cai, M.B. Zakaria, M.K. Masud, M.S.A. Hossain, J. Kim, W. Zhang, J. Na, Y. Yamauchi, Bull. Chem. Soc. Jpn. 92, 875–904 (2019)

    Article  CAS  Google Scholar 

  37. Y. Zhang, X. Yang, H.-C. Zhou, Polyhedron 154, 189–201 (2018)

    Article  CAS  Google Scholar 

  38. F. Eshraghi, M. Anbia, S. Salehi, J. Environ. Chem. Eng. 5, 4516–4523 (2017)

    Article  CAS  Google Scholar 

  39. Z. Jia, S. Hao, J. Wen, S. Li, W. Peng, R. Huang, X. Xu, Microporous Mesoporous Mater. 305, 110322 (2020)

    Article  CAS  Google Scholar 

  40. T. Tsuruoka, K. Inoue, A. Miyanaga, K. Tobiishi, T. Ohhashi, M. Hata, Y. Takashima, K. Akamatsu, J. Cryst. Growth 487, 1–7 (2018)

    Article  CAS  Google Scholar 

  41. V.M. Aceituno Melgar, J. Kim, M.R. Othman, J. Ind. Eng. Chem. 28, 1–15 (2015)

    Article  CAS  Google Scholar 

  42. X. Wei, D. Xu, K. Ge, S. Qi, Y. Chen, J. Inorg. Organomet. Polym. Mater. 1-7 (2020)

  43. Y.-R. Lee, M.-S. Jang, H.-Y. Cho, H.-J. Kwon, S. Kim, W.-S. Ahn, Chem. Eng. J. 271, 276–280 (2015)

    Article  CAS  Google Scholar 

  44. S. Wang, S. Zhang, J J. Inorg. Organomet. Polym. Mater. 27, 1317–1322 (2017)

    Article  CAS  Google Scholar 

  45. K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Proc. Natl. Acad. Sci. 103, 10186–10191 (2006)

    Article  CAS  PubMed  Google Scholar 

  46. Y.-T. Liao, S. Dutta, C.-H. Chien, C.-C. Hu, F.-K. Shieh, C.-H. Lin, K.C.-W. Wu, J. Inorg. Organomet. Polym. Mater. 25, 251–258 (2015)

    Article  CAS  Google Scholar 

  47. P. Song, Y. Tu, X. Shen, A. Yuan, L. Zhai, S.A. Shah, J. Inorg. Organomet. Polym. Mater. 29, 2083–2089 (2019)

    Article  CAS  Google Scholar 

  48. M. Wang, J. Zhang, X. Yi, X. Zhao, B. Liu, X. Liu, Appl. Surf. Sci. 507, 145166 (2020)

    Article  CAS  Google Scholar 

  49. M. Jiang, X. Cao, D. Zhu, Y. Duan, J. Zhang, Electrochim. Acta 196, 699–707 (2016)

    Article  CAS  Google Scholar 

  50. S. Salehi, M. Hosseinifard, Cellul. 1-28 (2020)

  51. M.N. Shahrak, M. Ghahramaninezhad, M. Eydifarash, Environ. Sci. Pollut. Res. 24, 9624–9634 (2017)

    Article  Google Scholar 

  52. X. Chen, X. Jiang, C. Yin, B. Zhang, Q. Zhang, J. Hazard. Mater. 367, 194–204 (2019)

    Article  CAS  PubMed  Google Scholar 

  53. L.S. Lai, Y.F. Yeong, N.C. Ani, K.K. Lau, A.M. Shariff, Part. Sci. Technol. 32, 520–528 (2014)

    Article  CAS  Google Scholar 

  54. J. Cravillon, C.A. Schröder, H. Bux, A. Rothkirch, J. Caro, M. Wiebcke, CrystEngComm 14, 492–498 (2012)

    Article  CAS  Google Scholar 

  55. M. Hassanimarand, M. Anbia, S. Salehi, ChemistrySelect 5, 6141–6152 (2020)

    Article  CAS  Google Scholar 

  56. S. Salehi, S. Alijani, M. Anbia, Int. J. Biol. Macromol. 164, 105–120 (2020)

    Article  CAS  PubMed  Google Scholar 

  57. S. Wang, S. Zhang, X. Du, Y. Shen, Z. Ma, Adv. Mater. Sci. Eng. 2019 (2019)

  58. J. Hou, J. Hao, Y. Wang, J. Liu, Chem. Res. Chinese U 35, 860–865 (2019)

    Article  CAS  Google Scholar 

  59. I. Langmuir, J. Am. Ceram. Soc. 40, 1361–1403 (1918)

    CAS  Google Scholar 

  60. H. Freundlich, Z. Phys. Chem. 57, 385–470 (1907)

    Article  CAS  Google Scholar 

  61. D. Jovanovic, Kolloid-Zeitschrift and Zeitschrift Fur Polymere. 235, 1203 (1969)

  62. M. Temkin, Acta physiochim. URSS 12, 327–356 (1940)

    CAS  Google Scholar 

  63. R. Katal, M.V. Sefti, M. Jafari, A.H.S. Dehaghani, S. Sharifian, M.A. Ghayyem, J. Ind. Eng. Chem. 18, 230–236 (2012)

    Article  CAS  Google Scholar 

  64. F. Ntuli, T. Falayi, U. Thwanane, WIT Trans. Ecol. Environ. 202, 383–390 (2016)

    Article  CAS  Google Scholar 

  65. J.E.E. Manage,

  66. C. Namasivayam, D. Sangeetha, Desalination 219, 1–13 (2008)

    Article  CAS  Google Scholar 

  67. H. Runtti, T. Luukkonen, M. Niskanen, S. Tuomikoski, T. Kangas, P. Tynjälä, E.-T. Tolonen, M. Sarkkinen, K. Kemppainen, J. Rämö, J. Hazard. Mater. 317, 373–384 (2016)

    Article  CAS  PubMed  Google Scholar 

  68. S. Hong, F.S. Cannon, P. Hou, T. Byrne, C. Nieto-Delgado, Carbon 73, 51–60 (2014)

    Article  CAS  Google Scholar 

  69. W. Chen, H.-c. Liu, J. Cent. South University 21, 1974–1981 (2014)

    Article  CAS  Google Scholar 

  70. E. Iakovleva, E. Mäkilä, J. Salonen, M. Sitarz, M. Sillanpää, Chem. Eng. J. 259, 364–371 (2015)

    Article  CAS  Google Scholar 

  71. W. Cao, Z. Dang, X.-Q. Zhou, X.-Y. Yi, P.-X. Wu, N.-W. Zhu, G.-N. Lu, Carbohydr. Polym. 85, 571–577 (2011)

    Article  CAS  Google Scholar 

  72. H. Gogoi, T. Leiviskä, J. Rämö, J. Tanskanen, Environ. Res. 175, 323–334 (2019)

    Article  CAS  PubMed  Google Scholar 

  73. S. Koumaiti, K. Riahi, F. Ounaies, B.B. Thayer, J. Environ. Sci. Eng. 5 (2011)

  74. N. Priyantha, S. Perera, Water Resour. Manag. 14, 417–434 (2000)

    Article  Google Scholar 

  75. Y. Ho, J. Ng, G. McKay, Sep. Purif. Methods 29, 189–232 (2000)

    Article  CAS  Google Scholar 

  76. Y.-S. Ho, G. McKay, Process Biochem. 34, 451–465 (1999)

    Article  CAS  Google Scholar 

  77. M. Low, Chem. Rev. 60, 267–312 (1960)

    Article  CAS  Google Scholar 

  78. W.J. Weber, J.C. Morris, J. Sanit. Eng. Div. 89, 31–60 (1963)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Research Council of Iran University of Science and Technology (Tehran) for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Anbia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khabazipour, M., Anbia, M. Process optimization and adsorption modeling using hierarchical ZIF-8 modified with Lanthanum and Copper for sulfate uptake from aqueous solution: Kinetic, Isotherm and Thermodynamic studies. J Inorg Organomet Polym 31, 2401–2424 (2021). https://doi.org/10.1007/s10904-021-01878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01878-6

Keywords

Navigation