Skip to main content
Log in

Study on the Structure Activity Relationship of ZIF-8 Synthesis and Thermal Stability

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The solvothermal method was utilized to synthesize the crystal of ZIF-8 by taking the molar ratio of the metal ions to the organic ligands of 2:1 at 120 °C. This was the best technological condition. Meanwhile, as demonstrated in characterization of the X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetry (TGA) and Fourier Transform infrared spectroscopy (FTIR). SEM was showed that the crystal of ZIF-8 was endowed with high crystallinity and prismatic structure, with the size range of 5–10 μm, the BET specific surface area of the crystal was 739.4 m2 g−1. TGA was showed that its thermal stability could live up to 600 °C. FTIR was showed that the acid is completely protonated, and the Zn2+ and the 2-Methylimidazole are formed the crystal ZIF-8, in addition, O–Zn adsorption peak also existed in the crystal ZIF-8. Then the structure activity relationship of the crystal ZIF-8 synthesis, thermal stability and N2 sorption property was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Sabouni, H. Kazemian, S. Rohani, Environ. Sci. Pollut. Res. 21, 5427–5449 (2014) doi:10.1007/s11356-013-2406-2

    Article  CAS  Google Scholar 

  2. Z. Hasan, S.H. Jhung, J. Hazard. Mater. 283, 329–339 (2015)

    Article  CAS  Google Scholar 

  3. N.Y. Zhu, G. Tobin, W. Schmitt, Chem. Commun. (2012). doi:10.1039/c2cc17357c

    Google Scholar 

  4. D.M. Liu, Q. Wu, R.L. Andersson et al., J. Am. Chem. Soc. (2015). doi:10.1021/ja511539a

    Google Scholar 

  5. H.H. Li, Z. Niu, T. Han et al., Sci. China Chem. (2011). doi:10.1007/s11426-011-4356-1

    Google Scholar 

  6. V.I. Isaeva, E.V. Belyaeva, A.N. Fitch et al., Cryst. Growth Des. 13, 5305–5315 (2013)

    Article  CAS  Google Scholar 

  7. J. Dai, M.L. McKee, A. Samokhvalov, J. Porous Mater. 21, 709–727 (2014)

    Article  CAS  Google Scholar 

  8. S.W. Liu, J.H. Wang, J.G. Yu, RSC Adv. (2016). doi:10.1039/c6ra11264a

    Google Scholar 

  9. R. Banerjee, A. Phan, B. Wang et al., Science, 319, 939–943 (2008)

    Article  CAS  Google Scholar 

  10. D. Chandra, M.W. Kasture, A. Bhaumik, Microporous Mesoporous Mater. (2008) doi:10.1016/j.micromeso.2008.04.003

    Google Scholar 

  11. Z. Yang, L. Liu, T. Gui, X.S. Chen, Chin. J. Chem. Phys. (2013). doi:10.1063/1674-0068/26/05/553-557

    Google Scholar 

  12. J.Q. Zhu, L. Jiang, C.N. Dai et al., Chin. J. Chem. Eng. (2015). 10.1016/j.cjche.2015.01.015 doi

    Google Scholar 

  13. C. McKinstry, R.J. Cathcart, E.J. Cussen et al., Chem. Eng. J. 285, 718–725 (2016)

    Article  CAS  Google Scholar 

  14. G.B. Che, W.W. Li, S.S. Wang et al., Chin. J. Inorg. Chem. (2013). doi:10.3969/j.issn.1001-4861.2013.00.337

    Google Scholar 

  15. N.L. Campbell, R. Clowes, L.K. Ritchie et al., Chem. Mater. 21, 204–206 (2009)

    Article  CAS  Google Scholar 

  16. L.-G. Qiu, Z.-Q. Li, Y. Wu et al., Chem. Commun. 22, 3642–3644 (2008)

    Article  Google Scholar 

  17. D. Kennedy, F.H. Tezel. Adsorption (2014). doi:10.1007/s10450-013-9562-z

    Google Scholar 

  18. L.J. Zhang, Z.X. Su, F.L. Jiang, et al., R. Soc. Chem. (2014) doi:10.1039/c4nr00348a

    Google Scholar 

  19. D.F. Liu, Y.B. Wu, Q.B. Xia, et al., Adsorption (2013) doi:10.1007/s10450-012-9407-1

    Google Scholar 

  20. T. Ma, T.T. Liu, Y.Y. Yang et al., Chin. J. Inorg. Chem. (2014). doi:10.11862/CJIC.2014.079

    Google Scholar 

  21. L.T. Nguyen, K.L. Ky, T.S. Nam, Chin. J. Catal. (2012) doi:10.1016/S1872-2067(11)60368-9

    Google Scholar 

  22. L.F. Song, C.H. Jiang, J. Zhang et al., J. Therm. Anal. Calorim. (2010). doi:10.1007/s10973-009-0207-0

    Google Scholar 

  23. H. Liu, Y.G. Zhao, Z.J. Zhang et al., Adv. Funct. Mater. (2011). doi:10.1002/adfm.201101479

    Google Scholar 

  24. H. Liu, Y.G. Zhao, Z.J. Zhang, et al., Chem. Asian J. (2013) doi:10.1002/asia.201201081

    Google Scholar 

  25. M. Isanejad, M. Arzani, H.R. Mahdavi, et al., J. Mol. Liq. 11, 1–10 (2016)

    Google Scholar 

  26. C.L. Jiang, B.M. Fu, H. Cai, et al., Chem. Spec. Bioavailab. (2016) doi:10.1080/09542299.2016.1224983

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51563015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, S. Study on the Structure Activity Relationship of ZIF-8 Synthesis and Thermal Stability. J Inorg Organomet Polym 27, 1317–1322 (2017). https://doi.org/10.1007/s10904-017-0585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0585-x

Keywords

Navigation