Skip to main content
Log in

Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Heavy metals are emerging toxic pollutants in which the development of advanced materials for their efficient adsorption and separation is thus of great significance in environmental sciences point of view. In this study, one of the zinc-based zeolitic imidazolate framework materials, known as ZIF-8, has been synthesized and used for chromium(VI) contaminant removal from water for the first time. The as-synthesized ZIF-8 adsorbent was characterized with different methodologies such as powder X-ray diffraction (XRD), thermo-gravimetric analysis, FT-IR, nuclear magnetic resonance spectroscopy, and UV–Vis spectra of solid state. Various factors affecting removal percentage (efficiency) are experimentally investigated including pH of solution, adsorbent dosage, contact time and initial concentration of Cr(VI) to achieve the optimal condition. The obtained results indicate that the ZIF-8 shows good performance for the Cr(VI) removal from aqueous solution so that 60 min mixing of 2 g of ZIF-8 adsorbent with the 2.5 ppm of Cr(VI) solution in a neutral environment will result in the highest separation efficiency around 70%. The time needed to reach the equilibrium (maximum separation efficiency) is only 60 min for a concentration of 5 mg L−1. Structure stability in the presence of water is also carefully examined by XRD determination of ZIF-8 under different contact times in aqueous solution, which suggests that the structure is going to be destructed after 60 min immersed in solution. Electrostatic interaction of Cr(VI) anions by positively charged ZIF-8 is responsible for Cr(VI) adsorption and separation. Moreover, equilibrium adsorption study reveals that the Cr(VI) removal process using ZIF-8 nicely fits the Langmuir and Toth isotherm models which mean the adsorbent has low heterogeneous surface with different distributions of adsorption energies during Cr(VI) adsorption. Equilibrium adsorption capacity is observed around 0.25 for 20 mg L−1 of initial Cr(VI) solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. It should be noted that, although the stability of MOFs in the presence of water is one of the most important challenges to apply MOFs in practical applications, the application of ZIF-8 is increasing in many industries due to its simple synthesis and higher stability in comparison with the other MOFs. MOF stability in aqueous solutions can be found in more details elsewhere (Ayati et al. 2016).

  2. As it would be explained in the “Effect of solution pH” section, the adopted pH for all experiments is equal to 7 (neutral environment).

  3. This value is close to the theoretical value obtained from crystallographic data which is about 11.6 Å (Park et al. 2006).

  4. It should be noted that this time was chosen as a function of the adsorption kinetics and the solid matrix destruction that will be explained in next sections.

  5. Maximum value was determined by the immersion time in the solution in which the destruction process of the adsorbent matrix begins.

  6. Also known as Langmuir–Freundlich model.

References

  • Abbasi A, Moradpour T, Van Hecke K (2015) A new 3D cobalt (II) metal–organic framework nanostructure for heavy metal adsorption. Inorganica Chimica Acta 430:261–267. doi:10.1016/j.ica.2015.03.019

    Article  CAS  Google Scholar 

  • Ahmed I, Jhung SH (2014) Composites of metal–organic frameworks: preparation and application in adsorption. Materials Today 17(3):136–146. doi:10.1016/j.mattod.2014.03.002

    Article  CAS  Google Scholar 

  • Aksu Z (2001) Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21(3):285–294. doi:10.1016/S1383-5866(00)00212-4

    Article  CAS  Google Scholar 

  • Amarasinghe BMWPK, Williams RA (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132(1):299–309. doi:10.1016/j.cej.2007.01.016

    Article  CAS  Google Scholar 

  • Arenas LT, Lima EC, dos Santos AA, Vaghetti JC, Costa TM, Benvenutti EV (2007) Use of statistical design of experiments to evaluate the sorption capacity of 1, 4-diazoniabicycle [2.2.2] octane/silica chloride for Cr(VI) adsorption. Colloids Surf A Physicochem Eng Asp 297(1):240–248. doi:10.1016/j.colsurfa.2006.10.050

    Article  CAS  Google Scholar 

  • Ayati A, Niknam Shahrak M, Tanhaei B, Sillanpää M (2016) Emerging adsorptive removal of azo dye by metal–organic frameworks. Chemosphere 160:30–44

    Article  CAS  Google Scholar 

  • Bakhtiari N, Azizian S (2015) Adsorption of copper ion from aqueous solution by nanoporous MOF-5: a kinetic and equilibrium study. J Mol Liq 206:114–118. doi:10.1016/j.molliq.2015.02.009

    Article  CAS  Google Scholar 

  • Bakhtiari N, Azizian S, Alshehri SM, Torad NL, Malgras V, Yamauchi Y (2015) Study on adsorption of copper ion from aqueous solution by MOF-derived nanoporous carbon. Microporous Mesoporous Mater 217:173–177. doi:10.1016/j.micromeso.2015.06.022

    Article  CAS  Google Scholar 

  • Bertke JA (2012) Synthesis and characterization of coordination polymers and studies for CO2 capture. University of Notre Dame. http://gateway.proquest.com

  • Bhattacharjee S, Lee YR, Ahn WS (2015) Post-synthesis functionalization of a zeolitic imidazolate structure ZIF-90: a study on removal of Hg (II) from water and epoxidation of alkenes. CrystEngComm 17(12):2575–2582. doi:10.1039/c4ce02555e

    Article  CAS  Google Scholar 

  • Biswal BP, Shinde DB, Pillai VK, Banerjee R (2013) Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning. Nanoscale 5(21):10556–10561. doi:10.1039/C3NR03511E

    Article  CAS  Google Scholar 

  • Bustamante EL, Fernández JL, Zamaro JM (2014) Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J Colloid Interface Sci 424:37–43. doi:10.1016/j.jcis.2014.03.014

    Article  CAS  Google Scholar 

  • Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D (2014) Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev 43(16):5594–5617. doi:10.1039/C4CS00078A

    Article  CAS  Google Scholar 

  • Chen Y, Xu H, Wang S, Kang L (2014) Removal of Cr (VI) from water using polypyrrole/attapulgite core–shell nanocomposites: equilibrium, thermodynamics and kinetics. RSC Adv 4(34):17805–17811. doi:10.1039/C3RA47351A

    Article  CAS  Google Scholar 

  • Cravillon J, Münzer S, Lohmeier SJ, Feldhoff A, Huber K, Wiebcke M (2009) Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater 21(8):1410–1412. doi:10.1021/cm900166h

    Article  CAS  Google Scholar 

  • Dai J, Ren F, Tao C (2012) Adsorption of Cr (VI) and speciation of Cr (VI) and Cr (III) in aqueous solutions using chemically modified chitosan. Int J Environ Res Public Health 9(5):1757–1770. doi:10.3390/ijerph9051757

    Article  CAS  Google Scholar 

  • Dehghani MH, Sanaei D, Ali I, Bhatnagar A (2016) Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies. J Mol Liq 215:671–679. doi:10.1016/j.molliq.2015.12.057

  • Do DD (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press

  • El-Ashtoukhy ES, Amin NK, Abdelwahab O (2008) Removal of lead(II) and copper(II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination 223(1):162–173. doi:10.1016/j.desal.2007.01.206

    Article  CAS  Google Scholar 

  • Fu F, Ma J, Xie L, Tang B, Han W, Lin S (2013) Chromium removal using resin supported nanoscale zero-valent iron. J Environ Manag 128:822–827. doi:10.1016/j.jenvman.2013.06.044

    Article  CAS  Google Scholar 

  • He M, Yao J, Liu Q, Wang K, Chen F, Wang H (2014) Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater 184:55–60. doi:10.1016/j.micromeso.2013.10.003

    Article  CAS  Google Scholar 

  • Jian M, Liu B, Zhang G, Liu R, Zhang X (2015) Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids Surf A Physicochem Eng Asp 465:67–76. doi:10.1016/j.colsurfa.2014.10.023

    Article  CAS  Google Scholar 

  • Jiang Y, Pang H, Liao B (2009) Removal of copper (II) ions from aqueous solution by modified bagasse. J Hazard Mater 164(1):1–9. doi:10.1016/j.jhazmat.2008.07.107

    Article  CAS  Google Scholar 

  • Kalkan E (2006) Utilization of red mud as a stabilization material for the preparation of clay liners. Eng Geol 87(3):220–229. doi:10.1016/j.enggeo.2006.07.002

    Article  Google Scholar 

  • Kano N, Tanabe K, Pang M, Deng Y, Imaizumi H (2014) Biosorption of chromium from aqueous solution using chitosan. J Chem Chem Eng 8:1049–1058. doi:10.17265/1934-7375/2014.11.005

    CAS  Google Scholar 

  • Ke F, Qiu LG, Yuan YP, Peng FM, Jiang X, Xie AJ, Zhu JF (2011) Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. J Hazard Mater 196:36–43. doi:10.1016/j.jhazmat.2011.08.069

    Article  CAS  Google Scholar 

  • Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater 244:444–456. doi:10.1016/j.jhazmat.2012.11.011

    Article  Google Scholar 

  • Li H, Eddaoudi M, O'Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279. doi:10.1038/46248

  • Li G, Lan J, Liu J, Jiang G (2013) Synergistic adsorption of As (V) from aqueous solution onto mesoporous silica decorated orderly with Al2O3 and Fe2O3 nanoparticles. J Colloid Interface Sci 405:164–170. doi:10.1016/j.jcis.2013.05.055

    Article  CAS  Google Scholar 

  • Li X, Gao X, Ai L, Jiang J (2015a) Mechanistic insight into the interaction and adsorption of Cr (VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem Eng J 274:238–246. doi:10.1016/j.cej.2015.03.127

    Article  CAS  Google Scholar 

  • Li ZQ, Yang JC, Sui KW, Yin N (2015b) Facile synthesis of metal-organic framework MOF-808 for arsenic removal. Mater Lett 160:412–414. doi:10.1016/j.matlet.2015.08.004

    Article  CAS  Google Scholar 

  • Liu B, Jian M, Liu R, Yao J, Zhang X (2015) Highly efficient removal of arsenic (III) from aqueous solution by zeoliticimidazolate frameworks with different morphology. Colloids Surf A Physicochem Eng Asp 481:358–366. doi:10.1016/j.colsurfa.2015.06.009

    Article  CAS  Google Scholar 

  • Maleki A, Hayati B, Naghizadeh M, Joo SW (2015) Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution. J Ind Eng Chem 28:211–216. doi:10.1016/j.jiec.2015.02.016

    Article  CAS  Google Scholar 

  • Mor S, Ravindra K, Bishnoi NR (2007) Adsorption of chromium from aqueous solution by activated alumina and activated charcoal. Bioresource Technol 98:954–957. doi:10.1016/j.biortech.2006.03.018

  • Morris W, Stevens CJ, Taylor RE, Dybowski C, Yaghi OM, Garcia-Garibay MA (2012) NMR and X-ray study revealing the rigidity of zeolitic imidazolate frameworks. J Phys Chem C 116(24):13307–13312. doi:10.1021/jp303907p

    Article  CAS  Google Scholar 

  • Mousavi HZ, Seyedi SR (2011) Nettle ash as a low cost adsorbent for the removal of nickel and cadmium from wastewater. International Journal of Environmental Science & Technology 8(1):195–202. doi:10.1007/BF03326209

    Article  CAS  Google Scholar 

  • Nadaroglu H, Kalkan E, Demir N (2010) Removal of copper from aqueous solution using red mud. Desalination 251(1):90–95. doi:10.1016/j.desal.2009.09.138

    Article  CAS  Google Scholar 

  • Nouri L, Ghodbane I, Hamdaoui O, Chiha M (2007) Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. J Hazard Mater 149(1):115–125. doi:10.1016/j.jhazmat.2007.03.055

    Article  CAS  Google Scholar 

  • Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103(27):10186–10191. doi:10.1073/pnas.0602439103

    Article  CAS  Google Scholar 

  • Peterson GW, JJ Mahle, A Balboa, TL Sewell, CJ Karwacki, and D Friday (2008) Evaluation of metal-organic frameworks for the removal of toxic industrial chemicals (no. ECBC-TR-621). Edgewood Chemical Biological Center Aberdeen Proving Ground MD.PDF Url : ADA483299

  • Qin Q, Wang Q, Fu D, Ma J (2011) An efficient approach for Pb(II) and Cd(II) removal using manganese dioxide formed in situ. Chem Eng J 172(1):68–74. doi:10.1016/j.cej.2011.05.066

    Article  CAS  Google Scholar 

  • Rowsell JL, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73(1):3–14. doi:10.1016/j.micromeso.2004.03.034

    Article  CAS  Google Scholar 

  • Sahranavard M, Ahmadpour A, Doosti MR (2011) Biosorption of hexavalent chromium ions from aqueous solutions using almond green hull as a low-cost biosorbent. Eur J Sci Res 58:392–400

  • Wang Y, Xu Y, Li D, Liu H, Li X, Tao S, Tian Z (2015) Ionothermal synthesis of zeolitic imidazolate frameworks and the synthesis dissolution-crystallization mechanism. Chin J Catal 36(6):855–865. doi:10.1016/S1872-2067(14)60278-3

    Article  Google Scholar 

  • Wilbur SB (2000) Toxicological profile for chromium. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry

  • Zahmakiran M (2012) Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ ZIF-8): synthesis, structural properties and catalytic performance. Dalton Trans 41(41):12690–12696. doi:10.1039/C2DT31779F

    Article  CAS  Google Scholar 

  • Zhang H, Liu D, Yao Y, Zhang B, Lin YS (2015) Stability of ZIF-8 membranes and crystalline powders in water at room temperature. J Membr Sci 485:103–111. doi:10.1016/j.memsci.2015.03.023

    Article  CAS  Google Scholar 

  • Zhang Y, Xie Z, Wang Z, Feng X, Wang Y, Wu A (2016) Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions. Dalton Trans 45(32):12653–12660. doi:10.1039/c6dt01827k

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Niknam Shahrak.

Additional information

Responsible editor: Guilherme L. Dotto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niknam Shahrak, M., Ghahramaninezhad, M. & Eydifarash, M. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution. Environ Sci Pollut Res 24, 9624–9634 (2017). https://doi.org/10.1007/s11356-017-8577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8577-5

Keywords

Navigation