Skip to main content
Log in

Growth and Characterization of Bis(thiourea) Antimony Tribromide: A Reliable Non-Linear Optical Crystal

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Bis(thiourea) antimony tribromide (BTAB) single crystals of semi organic non-linear optical (NLO) crystal category have been effectively grown and harvested by the technique of slow solvent evaporation. The important nucleation kinetic parameter values have been deduced for the title crystal and the agreement between the experimental and theoretical values of interfacial surface energy has been established. The orthorhombic structure and Cmc21 space group have been identified with the aid of single crystal X-ray diffraction studies. To validate the stoichiometry and the purity of the crystals, elemental analysis has been carried out. The UV transmittance spectrum has been employed to deduce the significant optical constant and oscillator parameter values. In the region of absorption edge, Urbach tail energy has been determined to ascertain the crystalline perfection of BTAB. The etching studies inferred the step growth pattern of the crystal. The phase matchable SHG efficiency of BTAB has been tested by Kurtz–Perry technique. The negative photoconductivity and low birefringence values have been revealed by photoconductivity study and birefringence study respectively. Dielectric and ac conductivity studies have helped in calculating the activation energy values of the electrical process. Important solid state parameters such as valence electron plasma energy, Penn gap, Fermi energy and polarisability have been calculated for the BTAB crystal. To assess the mechanical stability of the crystal Vicker’s micro hardness analysis has been performed and important mechanical parameters have been elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.S. Hussaini, N.R. Dhumane, G. Rabbani, P. Karmuse, V.G. Dongre, M.D. Shirsat, Growth and high frequency dielectric study of pure and thiourea doped KDP crystals. Cryst. Res. Technol. 42, 1110–1116 (2007)

    Article  CAS  Google Scholar 

  2. S. Ariponnammal, S. Radhika, N. Victorjaya, High pressure electrical resistivity study on nonlinear single crystal zinc thiourea sulphate (ZTS). Cryst. Res. Technol. 40, 786–788 (2005). doi:10.1002/crat.200410432

    Article  CAS  Google Scholar 

  3. S.M. RaviKumar, N. Melikechi, S. Selvakumar, P. Sagayaraj, Studies on the optical, thermal and electrical properties of bis(thiourea) cadmium formate NLO crystals. Phys. B Condens. Matter 403, 4160–4163 (2008). doi:10.1016/j.physb.2008.08.022

    Article  CAS  Google Scholar 

  4. J.G.S. Lopes, L.F.C. de Oliveira, H.G.M. Edwards, P.S. Santos, The Raman spectrum of thiourea–oxocarbon adducts. J. Raman Spectrosc. 35, 131–139 (2004). doi:10.1002/jrs.1113

    Article  CAS  Google Scholar 

  5. N.R. Rajagopalan, P. Krishnamoorthy, A systematic approach to physico–chemical analysis of tris(thiourea) zinc selenate: a semi-organic nonlinear optical crystal. Optik 129, 118–129 (2017). doi:10.1016/j.ijleo.2016.10.039

    Article  CAS  Google Scholar 

  6. V. Rajendran, J. Uma, Synthesis, structural, topographical, linear and nonlinear optical, electrical and mechanical properties of bisthiourea zinc acetate single crystal. Opt. Mater. 57, 249–256 (2016). doi:10.1016/j.optmat.2016.05.006

    Article  CAS  Google Scholar 

  7. N.R. Rajagopalan, P. Krishnamoorthy, K. Jayamoorthy, A strategic approach to physico–chemical analysis of bis(thiourea) lead chloride: a reliable semi-organic nonlinear optical crystal. Opt. Laser Technol. 89, 6–15 (2017). doi:10.1016/j.optlastec.2016.10.001

    Article  CAS  Google Scholar 

  8. R. Uthrakumar, C. Vesta, C. Justin Raj, S. Krishnan, S. Jerome Das, Bulk crystal growth and characterization of non-linear optical bisthiourea zinc chloride single crystal by unidirectional growth method. Curr. Appl. Phys. 10, 548–552 (2010). doi:10.1016/j.cap.2009.07.018

    Article  Google Scholar 

  9. N.R. Rajagopalan, P. Krishnamoorthy, Contemporary studies on growth and characterization of bis(thiourea) strontium chloride: a potential optoelectronic NLO material. Optik 127, 3582–3589 (2016). doi:10.1016/j.ijleo.2015.12.153

    Article  CAS  Google Scholar 

  10. N. Karthik, R. Sankar, R. Jayavel, S. Pandi, Synthesis, growth and characterization of semi-organic non-linear optical bis thiourea antimony tribromide single crystals. J. Cryst. Growth 312, 114–119 (2009). doi:10.1016/j.jcrysgro.2009.09.054

    Article  Google Scholar 

  11. N.P. Rajesh, V. Kannan, P. Santhana Raghavan, P. Ramasamy, C.W. Lan, Nucleation studies and crystal growth of (NH4)2H2PO4 doped with thiourea in super saturated aqueous solutions. Mater. Chem. Phys. 76, 181–186 (2002). doi:10.1016/S0254-0584(01)00525-9

    Article  CAS  Google Scholar 

  12. N.P. Zaitseva, L.N. Rashkovich, S.V. Bogatyreva, Stability of KH2PO4 and K(H, D)2PO4 solutions at fast crystal growth rates. J. Crys. Growth 148, 276–282 (1995). doi:10.1016/0022-0248(94)00606-7

    Article  CAS  Google Scholar 

  13. H. El-shall, Jin-Hwan Jeon, E.A. Abdel, S. Khan, L. Gower, Y. Rabinovich, A study of primary nucleation of calcium oxalate monohydrate: I-effect of supersaturation. Cryst. Res. Technol. 39, 214–221 (2004). doi:10.1002/crat.200310173

    Article  CAS  Google Scholar 

  14. M. Volmer, A. Weber, Keimbildung in übersättingten Gebilden (nucleus formation in super saturated systems). Z. Phys. Chem. Abt. A 119, 277–301 (1926)

    CAS  Google Scholar 

  15. A. Siva Dhas, P. Selvarajan, T.H. Freeda, Nucleation kinetics, growth and XRD studies of undoped and zinc sulfate-doped triglycine sulpho-phosphate (TGSP) crystals. Mater. Manuf. Proc. 24, 584–589 (2009)

    Article  Google Scholar 

  16. P. Bennema, O. Sohnel, Interfacial surface tension for crystallization and precipitation from aqueous solutions. J. Cryst. Growth 102, 547–556 (1990). doi:10.1016/0022-0248(90)90412-E

    Article  CAS  Google Scholar 

  17. J. Christoffersen, E. Rostrup, M.R. Christoffersen, Relation between interfacial surface tension of electrolyte crystal in aqueous suspension and their solubility: a simple derivation based on surface nucleation. J. Cryst. Growth 113, 599–605 (1991). doi:10.1016/0022-0248(91)90096-N

    Article  CAS  Google Scholar 

  18. A.E. Nielson, O. Sohnel, Interfacial tensions electrolyte crystal-aqueous solution, from nucleation data. J. Cryst. Growth 11, 233–242 (1971). doi:10.1016/0022-0248(71)90090-X

    Article  Google Scholar 

  19. F. Feigl, V. Anger, Spot Tests in Inorganic Analysis, 6th edn. (Elsevier, New York, 2012), p. 529)

    Google Scholar 

  20. M. Toulemonde, C. Dufour, E. Paumier, Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors. Phys. Rev. B 46, 14362–14369 (1992). doi:10.1103/PhysRevB.46.14362

    Article  CAS  Google Scholar 

  21. N.R. Dhumane, S.S. Hussaini, V.G. Dongre, M.D. Shirsat, Influence of glycine on the nonlinear optical properties of zinc (tris)thiourea sulfate (ZTS) single crystal. Opt. Mater. 31, 328–332 (2008). doi:10.1016/j.optmat.2008.05.002

    Article  CAS  Google Scholar 

  22. P.M. Ushashree, R. Jayavel, C. Subramanian, P. Ramasamy, Growth of zinc thiourea sulfate (ZTS) single crystals: a potential semiorganic NLO material. J. Cryst. Growth 197, 216–220 (1999). doi:10.1016/S0022-0248(98)00906-3

    Article  Google Scholar 

  23. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solid. B 15, 627–637 (1966). doi:10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  24. F. El-Diasty, F.A. Abdel Wahab, M. Abdel-baki, Optical band gap studies on lithium aluminium silicate glasses doped with Cr3+ ions. J. Appl. Phys. 100, 093511-1-7 (2006). doi:10.1063/1.2362926

    Article  Google Scholar 

  25. A.M. AbdulWahab, Influence of temperature on the optical properties of zinc tris-thiourea sulfate (ZTS) single crystal. Opt. Mater. 35, 146–154 (2012). doi:10.1016/j.optmat.2012.07.015

    Article  CAS  Google Scholar 

  26. S. Banerjee, A. Kumar, Swift heavy ion induced modifications in the optical band gap and Urbach’s tail in polyaniline nanofibres. Nucl. Instrum. Methods Phys. Res. Sect. B 269, 2798–2806 (2011). doi:10.1016/j.nimb.2011.09.004

    Article  CAS  Google Scholar 

  27. S.M.N. Priya, B. Varghese, J.M. Linet, G. Bhagavannarayana, C.J. Raj, S. Krishnan, S. Dinakaran, S. Jerome Das, Growth, and characterization of novel non-linear optical active dichloridodiglycine zinc dihydrate single crystals. Cryst. Growth Des. 8(5) 1663–1667 (2008). doi:10.1021/cg701162j

    Article  CAS  Google Scholar 

  28. M. Rigana Begam, N. Madhushdhana rao, S. Kaleemulla, N. Sai Krishna, M. Kuppan, G. Krishnaiah, J. Subrahmanyam, Room temperature ferro magnetism in Cd1–xCrxTe diluted magnetic semiconductor crystal. Mater. Sci. Semicond. Proc. 18, 146–151 (2014). doi:10.1016/j.mssp.2013.11.017

    Article  CAS  Google Scholar 

  29. D.D.O. Eya, A.J. Ekpunobi, C.E. Okeke, Influence of thermal annealing on the optical properties of tin oxide thin films prepared by chemical bath deposition technique. Acad. Open Internet J. 17, 1–10 (2006)

    Google Scholar 

  30. M.S. Shakeri, M. Rezvani, Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions. Spectrochim. Acta, Part A 79, 1920–1925 (2011). doi:10.1016/j.saa.2011.05.090

    Article  CAS  Google Scholar 

  31. N.F. Mott, E.A. Davis, Electronic Process in Non-Crystalline Materials, 2nd edn. (Clarendon, Oxford, 1979)

    Google Scholar 

  32. P.V. Dhanaraj, T. Suthan, N.P. Rajesh, Synthesis, crystal growth and characterization of a semiorganic material: calcium dibromide bis(glycine) tetrahydrate. Curr. Appl. Phys. 10(2010) 1349–1353 (2010). doi:10.1016/j.cap.2010.04.008

    Article  Google Scholar 

  33. S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant incovalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971). doi:10.1103/PhysRevB.3.1338

    Article  Google Scholar 

  34. M.M. El-Nahass, A.H. Ammar, A.A. Atta, A.A.M. Farag, E.F.M. El-Zaidia, Influence of X-ray irradiation on the optical properties of CoMTPP thin films. Opt. Commun. 284, 2259–2263 (2011). doi:10.1016/j.optcom.2010.12.032

    Article  CAS  Google Scholar 

  35. S.H. Wemple, M. DiDomenico, Optical dispersion and structure of solids. J. Phys. Rev. Lett. 23(20) 1156–1160 (1969). doi:10.1103/PhysRevLett.23.1156

    Article  CAS  Google Scholar 

  36. S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B Condens. Matter 7, 3767–3777 (1973). doi:10.1103/PhysRevB.7.3767

    Article  CAS  Google Scholar 

  37. A.F. Qasrawi, Temperature dependence of the band gap, refractive index and single-oscillator parameters of amorphous indium selenide thin films. Opt. Mater. 29, 1751–1755 (2007). doi:10.1016/j.optmat.2006.09.009

    Article  CAS  Google Scholar 

  38. A.F. Qasrawi, N.M. Gasanly, Optical properties of Tl2InGaS4 layered single crystal. Opt. Mater. 29, 1763–1767 (2007). doi:10.1016/j.optmat.2006.09.008

    Article  CAS  Google Scholar 

  39. T.C. Sabari Girisun, S. Dhanuskodi, Linear and non-linear optical properties of tris thiourea zinc sulphate single crystals. Cryst. Res. Technol. 44, 1297–1302 (2009). doi:10.1002/crat.200900351

    Article  Google Scholar 

  40. P.M. Ushasree, R. Jayavel, Growth and micromorphology of as-grown and etched bis(thiourea) cadmium chloride (BTCC) single crystals. Opt. Mater. 21, 599–604 (2002). doi:10.1016/S0925-3467(02)00208-2

    Article  Google Scholar 

  41. S. Sagadevan, Studies on optical, mechanical, dielectric properties of bisthiourea nickel bromide NLO single crystal. Optik 125, 6746–6750 (2014). doi:10.1016/j.ojleo.2014.08.059

    Article  CAS  Google Scholar 

  42. S. Mukerji, T. Kar, Etch pit study of different crystallographic faces of l-arginine hydrobromide monohydrate (LAHBR) in alcohols. J. Cryst. Growth 200, 543–549 (1999). doi:10.1016/S0022-0248(98)01251-2

    Article  CAS  Google Scholar 

  43. A. Sonoc, M. Samoc, P.N. Prasad, A. Krajewska-Cizio, Second-harmonic generation in the crystalline complex antimony triiodide–sulfur. J. Opt. Soc. Am. B 9, 1819–1824 (1992). doi:10.1364/JOSAB.9.001819

    Article  Google Scholar 

  44. S.K. Kurtz, T.T. Perry, A powder technique for the evaluation of non-linear optical materials. J. Appl. Phys. 39, 3798–3812 (1968). doi:10.1063/1.1656857

    Article  CAS  Google Scholar 

  45. K. Buse, M. Luennemann, 3D imaging: wave front sensing utilizing a birefringent crystal. Phys. Rev. Lett. 85, 3385–3387 (2000). doi:10.1103/PhysRevLett.85.3385

    Article  CAS  Google Scholar 

  46. S. Kar, S. Verma, K.S. Bartwal, Growth optimization and optical characteristics of Fe doped LiNbO3 crystals. Cryst. Growth Des. 8, 4424–4427 (2008). doi:10.1021/cg800163f

    Article  CAS  Google Scholar 

  47. N. Vijayan, K. Nagarajan, AMZ slawin, C.K. Shasidharan Nair, G. Bhagavannarayana, Growth of benzimidazole single crystal by Sankaranarayanan–Ramasamy method and its characterization by high-resolution x-ray diffraction, thermogravimetric/differential thermal analysis, and birefringence studies. Crys. Growth Des. 7(2), 445–448 (2007). doi:10.1021/cg0605180

    Article  CAS  Google Scholar 

  48. R.L. Fork, O.E. Martinez, J.P. Gordon, Negative dispersion using pairs of prisms. Opt. Lett. 9, 150–152 (1984). doi:10.1364/OL.9.000150

    Article  CAS  Google Scholar 

  49. P. Krishnan, K. Gayathri, P.R. Rajkumar, V. Jayaramakrishnan, S. Gunasekaran, G. Anbalagan, Studies on crystal growth, vibrational, optical, thermal and dielectric properties of new organic non-linear optical crystal: bis(2,3-dimethoxy-10-oxostrychnidinium) phthalate nonahydrate single crystal. Spectrochim. Acta Part A 131, 114–124 (2014). doi:10.1016/j.saa.2014.03.040

    Article  CAS  Google Scholar 

  50. F.P. Xavier, A. Regis Inigo, G.J. Goldsmith, Role of metal phthalocyanine in redox complex conductivity of polyaniline and aniline black. J. Porphyrins Phthalocyanines 3, 679–690 (1999). doi:10.1002/(SICI)1099-1409(199908/10)3:6/7<679::AID-JPP196>3.0.CO;2-C

    Article  CAS  Google Scholar 

  51. S. Abraham Rajasekar, K. Thamizharasan, J.G.M. Jesudurai, D. Prem Anand, P. Sagayaraj, The role of metallic dopants on the optical and photoconductivity properties of pure and doped potassium pentaborate (KB5) single crystals. Mater. Chem. Phys. 84, 157–161 (2004). doi:10.1016/j.matchemphys.2003.11.017

    Article  Google Scholar 

  52. B. Babu, J. Chandrasekaran, S. Balaprabhakaran, P. Ilayabarathi, Optical, structural and electrical properties of pure and urea doped KDP crystals. Mater. Sci. Poland 31, 151–157 (2013). doi:10.2478/s13536-012-0082-4

    Article  CAS  Google Scholar 

  53. R. Uthrakumar, C. Vesta, G. Bhagavannarayana, R. Robert, S. Jerome Das, Optical, crystalline perfection and mechanical studies on unidirectional grown bis(thiourea) cadmium zinc chloride single crystal. J. Alloy Comp. 509, 2343–2347 (2011). doi:10.1016/j.jallcom.2010.11.015

    Article  CAS  Google Scholar 

  54. N. Ponpandian, P. Balaya, A. Narayanasamy, Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J. Phys. Condens. Matter. 14, 3221–3237 (2002). doi:10.1088/0953-8984/14/12/311

    Article  CAS  Google Scholar 

  55. S. Ramesh, M.F. Chai, Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)–lithium triflate polymer electrolytes. Mat. Sci. Eng B 139, 240–245 (2007). doi:10.1016/j.mseb.2007.03.003

    Article  CAS  Google Scholar 

  56. S. Hirano, P.C. Kim, H. Orihara, H. Umeda, Y. Ishibasi, Dielectric properties of hydro-thermally grown gallium orthophosphate single crystals. J. Mater. Sci. 25, 2800–2804 (1990). doi:10.1007/BF00584883

    Article  CAS  Google Scholar 

  57. M. Meena, C.K. Mahadevan, Growth and electrical characterization of l-arginine added KDP and ADP single crystals. Cryst. Res. Technol. 43, 166–172 (2008). doi:10.1002/crat.200711064

    Article  CAS  Google Scholar 

  58. N. Goel, N. Sinha, B. Kumar, Growth and properties of sodium tetra borate deca hydrate single crystals. Mater. Res. Bull. 48, 1632–18636 (2013). doi:10.1016/j.materresbull.2013.01.007

    Article  CAS  Google Scholar 

  59. N.M. Ravindra, R.P. Bharadwaj, K. Sunil Kumar, V.K. Srinivastava, Model based studies of some optical and electronic properties of narrow and wide gap materials. Infrared Phys. 21, 369–381 (1981). doi:10.1016/0020-0891(81)90045-2

    Article  CAS  Google Scholar 

  60. D. Anbuselvi, J. Elberin Mary Therasa, D. Jayaraman, V. Joseph, Nucleation kinetics, growth and analysis of structural, optical, dielectric and mechanical properties of non-linear optical material: l-proline manganese chloride. Phys. B 423, 38–44 (2013). doi:10.1016/j.physb.2013.04.049

    Article  CAS  Google Scholar 

  61. R.R. Reddy, Y. Nazeer Ahammed, M. Ravi Kumar, Variation of magnetic susceptibility with electronic polarizability in compound semiconductors and alkali halides. J. Phys. Chem. Solids 56, 825–829 (1995). doi:10.1016/0022-3697(94)00268-1

    Article  CAS  Google Scholar 

  62. S. Mukerji, T. Kar, Vicker’s microhardness studies of l-arginine hydrobromide mono hydrate crystals (LAHBr). Cryst. Res. Technol. 34, 1323–1328 (1999). doi:10.1002/(SICI)1521-4079(199912)34:10<1323::AID-CRAT1323>3.0.CO;2-4

    Article  CAS  Google Scholar 

  63. J. Kumar, M. Thirumavalavan, F.D. Gnanam, P. Ramasamy, Microindentation studies on single crystals of sodium and ammonium fluoroborates. Phys Status Solid (a) 103, 431–434 (1987). doi:10.1002/pssa.2211030212

    Article  CAS  Google Scholar 

  64. K. Sangwal, On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 63, 145–152 (2000). doi:10.1016/S0254-0584(99)00216-3

    Article  CAS  Google Scholar 

  65. J. Gil Sevillano, H. Mughrabi, Plastic Deformation and Fracture of Materials. (VCH Verlagsges, Weinheim, 1993)

    Google Scholar 

  66. Meyer, Some Aspects of the Hardness of the Metals, Ph.D thesis, draft (1951)

  67. K. Sangwal, A. Klos, Study of micro indentation hardness of different planes of gadmium calcium oxyborate single crystals. Cryst. Res. Technol. 40, 429–438 (2005). doi:10.1002/crat.200410362

    Article  CAS  Google Scholar 

  68. E.M. Onitsch, Uber die Mikroharte der Metalle. Microskopie 2, 131–151 (1947)

    Google Scholar 

  69. W.A. Wooster, Physical properties and atomic arrangements in crystals. Rep. Prog. Phys. 16, 62–82 (1953). doi:10.1088/0034-4885/16/1/302

    Article  Google Scholar 

  70. O. Ozturk, T. Gokcen, S. Cavdar, H. Koralay, A.T. Tasci, A study on nucleation, crystallization kinetics, microstructure and mechanical properties of Ru–Bi partial substituted BSCCO glass ceramics. J. Therm. Anal. Calorim. 123, 1073–1082 (2016). doi:10.1007/s10973-015-5028-8

    Article  CAS  Google Scholar 

  71. G. Liu, J. Liu, X. Zheng, Y. Liu, D. Yuan, X. Zhang, Z. Gao, X. Tao, Bulk crystal growth and characterization of semi-organic non-linear optical crystal tri-ethylammonium hexachlorobismuthate (TDCB). CrystEngComm. 17, 2569–2574 (2015). doi:10.1039/c4ce02182g

    Article  CAS  Google Scholar 

  72. C.B. Proton, R.D. Rawling, Dependence of the Vickers indentation fracture toughness on the surface crack length. Br. Ceram. Trans. J. 88, 83–90 (1989)

    Google Scholar 

  73. K. Nihara, R. Morena, D.P.H. Hasselman, Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13–16 (1982). doi:10.1007/BF00724706

    Article  Google Scholar 

  74. K. Jagannathan, S. Kalainathan, T. Gnanasekaran, Microhardness studies on 4-dimethyl amino-N-methyl 4-stilbazolium tosylate (DAST). Mater. Lett. 61, 4485–4488 (2007). doi:10.1016/j.matlet.2007.02.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to B.S. Abdur Rahman University, Chennai; PG and research Department of Chemistry, Dr. Ambedkar Govt. Arts College, Vyasarpadi; SAIF-Indian Institute of Technology, Chennai; St. Joseph’s College of Engineering, Chennai; University of Madras, Guindy campus; IISc, Bengaluru; St. Joseph College, Trichy for extending their lab facilities towards the research studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Krishnamoorthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopalan, N.R., Krishnamoorthy, P. Growth and Characterization of Bis(thiourea) Antimony Tribromide: A Reliable Non-Linear Optical Crystal. J Inorg Organomet Polym 27, 296–312 (2017). https://doi.org/10.1007/s10904-016-0472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0472-x

Keywords

Navigation