Skip to main content
Log in

Impact of Halide Ion Occupancy on Thermodynamic, Mechanical, Electro-optic, and Electron Transport Characteristics of Rb2CuAsX6 (X = F, Cl, Br) Double Perovskites Using Density Functional Theory

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This work utilizes density functional theory (DFT) to analyze the structural, thermodynamic, mechanical, electro-optic, and electron transport characteristics of Rb2CuAsX6 (X = F, Cl, Br) perovskites. The impact of occupancy of different halide ions at the X-site on the thermodynamic, mechanical, optical, and thermoelectric response of studied compounds has also been evaluated. The investigation of the elastic parameters and formation energy has confirmed that the examined perovskites are cubic in structure, stable, and ductile. The thermodynamic characteristics that rely on temperature are estimated using the quasi-harmonic Debye approach. The thermal features such as entropy, heat capacity, and Debye temperature are calculated and analyzed to assess the stability at elevated temperatures and the suitability of compounds for industrial applications. The band structure computations identified Rb2CuAsF6, Rb2CuAsCl6, and Rb2CuAsBr6 are p-type semiconductors with indirect band gaps of 1.25, 1.10, and 0.83 eV, respectively, which decreases while substituting F with Cl and Br. The optical characteristics such as strong optical absorption (> 105 cm−1) and minimal dispersion in the visible and ultraviolet spectrum highlight their suitability for solar energy conversion and optoelectronics. Additionally, thermoelectric characteristics have been determined, showing a higher thermoelectric figure of merit (ZT) value of 0.80, 0.79, and 0.78, respectively, at room temperature. Our research anticipates these perovskite combinations exhibit superior photoelectric and thermoelectric efficiency, rendering them potential prospects for advanced photovoltaic and thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The corresponding author will provide the data generated during the study upon a reasonable request.

References

  1. N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103(43), 15729–15735 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. Amin, H.H. Shah, A.G. Fareed, W.U. Khan, E. Chung, A. Zia, Z.U.R. Farooqi, C. Lee, Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int. J. Hydrogen Energy 47(77), 33112–33134 (2022)

    Article  CAS  Google Scholar 

  3. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Photovoltaic technology: the case for thin-film solar cells. Science 285(5428), 692–698 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18), 2655–2661 (2010)

    Article  CAS  Google Scholar 

  5. D. Beretta, N. Neophytou, J.M. Hodges, M.G. Kanatzidis, D. Narducci, M. Martin-Gonzalez, M. Beekman, B. Balke, G. Cerretti, W. Tremel, A. Zevalkink, Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. 138, 100501 (2019)

    Article  Google Scholar 

  6. H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. W.J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 12(2), 442–462 (2019)

    Article  CAS  Google Scholar 

  9. Q.A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon, G. Bertoni, J.M. Ball, M. Prato, A. Petrozza, L. Manna, Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2(2), 1–7 (2016)

    Article  CAS  Google Scholar 

  10. G.E. Eperon, G.M. Paternò, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Cacialli, H.J. Snaith, Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3(39), 19688–19695 (2015)

    Article  CAS  Google Scholar 

  11. T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S.G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3(47), 23829–23832 (2015)

    Article  CAS  Google Scholar 

  12. P. Ramasamy, D.H. Lim, B. Kim, S.H. Lee, M.S. Lee, J.S. Lee, All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 52(10), 2067–2070 (2016)

    Article  CAS  Google Scholar 

  13. W. Zhang, G.E. Eperon, H.J. Snaith, Metal halide perovskites for energy applications. Nat. Energy 1(6), 1–8 (2016)

    Article  Google Scholar 

  14. X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells. Solar Energy 77(6), 803–814 (2004)

    Article  CAS  Google Scholar 

  15. B. Albiss, M. Al-Widyan, Numerical simulation, preparation, and evaluation of Cu (In, Ga) Se2 (CIGS) thin-film solar cells. ChemEngineering 7(5), 87 (2023)

    Article  CAS  Google Scholar 

  16. M.M.A. Moon, M.F. Rahman, J. Hossain, A.B.M. Ismail, Comparative study of the second generation a-Si: H, CdTe, and CIGS thin-film solar cells. Adv. Mater. Res. 1154, 102–111 (2019)

    Article  Google Scholar 

  17. K. Assiouan, A. Marjaoui, J.E. Khamkhami, M. Zanouni, H. Ziani, A. Bouchrit, A. Achahbar, Theoretical investigation of Rb2AuBiX6 (X = Br, cl, F) double perovskite for thermoelectric and optoelectronic applications. J. Phys. Chem. Solids 188, 111890 (2024)

    Article  CAS  Google Scholar 

  18. T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4(1), 2885 (2013)

    Article  PubMed  Google Scholar 

  19. A.H. Slavney, R.W. Smaha, I.C. Smith, A. Jaffe, D. Umeyama, H.I. Karunadasa, Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers. Inorg. Chem. 56(1), 46–55 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15(3), 247–251 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. M.R. Jani, M.T. Islam, S.M. Al Amin, M.S.U. Sami, K.M. Shorowordi, M.I. Hossain, S. Chowdhury, S.S. Nishat, S. Ahmed, Exploring solar cell performance of inorganic Cs2TiBr6 halide double perovskite: a numerical study. Superlatt. Microstruct. 146, 106652 (2020)

    Article  CAS  Google Scholar 

  22. L.Z. Lei, Z.F. Shi, Y. Li, Z.Z. Ma, F. Zhang, T.T. Xu, Y.T. Tian, D. Wu, X.J. Li, G.T. Du, High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs2AgBiBr6 thin films. J. Mater. Chem. C 6(30), 7982–7988 (2018)

    Article  CAS  Google Scholar 

  23. M.A. Khan, H.A. Alburaih, N.A. Noor, A. Dahshan, Comprehensive investigation of opto-electronic and transport properties of Cs2ScAgX6 (X = Cl, Br, I) for solar cells and thermoelectric applications. Solar Energy 225, 122–128 (2021)

    Article  Google Scholar 

  24. E.T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28(5), 1348–1354 (2016)

    Article  CAS  Google Scholar 

  25. Y. Xu, T. Gong, J.N. Munday, The generalized Shockley–Queisser limit for nanostructured solar cells. Sci. Rep. 5(1), 13536 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  26. A. Ayyaz, G. Murtaza, A. Ahmed, S.M. Ramay, A. Usman, G. Farid, M. Naeem, Comparative DFT-based investigation of physical properties of Cs2MBiBr6 (M = Ag, Cu, and Au) Perovskites: sustainable materials for renewable energy. Comput. Condens. Matter. 38, e00885 (2024)

    Article  Google Scholar 

  27. A. Ayyaz, G. Murtaza, M. Umer, A. Usman, H.H. Raza, Structural, elastic, optoelectronic, and transport properties of Na-based halide double perovskites Na2CuMX6 (M = Sb, Bi, and X = Cl, Br) as renewable energy materials: a DFT insight. J. Mater. Res. 38(20), 4609–4624 (2023)

    Article  CAS  Google Scholar 

  28. A. Ayyaz, G. Murtaza, M. Naeem, A. Usman, S.M. Ramay, M. Irfan, H. Irfan, DFT exploration of elastic, optoelectronic, and thermoelectric properties of stable and eco-friendly double perovskites Cs2YAuX6 (X = Cl, Br) for green energy applications. J. Phys. Chem. Solids 188, 111936 (2024)

    Article  CAS  Google Scholar 

  29. D.Y. Hu, X.H. Zhao, T.Y. Tang, L.M. Lu, L. Li, L.K. Gao, Y.L. Tang, Exploring the structural, electronic and optical properties of vacancy-ordered double perovskites Cs2TlAsX6 (X = I, Br, Cl) based on first-principles. Phys. Lett. A 427, 127917 (2022)

    Article  CAS  Google Scholar 

  30. D.Y. Hu, X.H. Zhao, T.Y. Tang, L. Li, Y.L. Tang, Insights on structural, elastic, electronic and optical properties of double-perovskite halides Rb2CuBiX6 (X = Br, Cl). J. Phys. Chem. Solids 167, 110791 (2022)

    Article  CAS  Google Scholar 

  31. G. Nazir, Q. Mahmood, M. Hassan, Tuning of band gap by anions (Cl, Br, I) of double perovskites Rb2AgAsX6 (Cl, Br, I) for solar cells and thermoelectric applications. Phys. Scripta 98(2), 025811 (2023)

    Article  Google Scholar 

  32. S. Charef, A. Assali, A. Boukortt, Optoelectronic and thermoelectric properties of novel double halide perovskites Na2AgAsX6 (X = Cl, Br) for efficient green solar cells. Mater. Today Commun. 38, 108065 (2024)

    Article  CAS  Google Scholar 

  33. P. Blaha, K. Schwarz, G.K. Madsen, D. Kvasnicka, J. Luitz, wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties, 60(1) (2001)

  34. Z. Wu, R.E. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B 73(23), 235116 (2006)

    Article  Google Scholar 

  35. G. Rehman, M. Shafiq, Saifullah, R. Ahmad, S. Jalali-Asadabadi, M. Maqbool, I. Khan, H. Rahnamaye-Aliabad, I. Ahmad, Electronic band structures of the highly desirable III–V semiconductors: TB-mBJ DFT studies. J. Electron. Mater. 45, 3314–3323 (2016)

    Article  CAS  Google Scholar 

  36. A. Ayyaz, G. Murtaza, M. Shafiq, M.Q. Shah, N. Sfina, S. Ali, Exploring structural, thermodynamic, elastic, electro-optic, and thermoelectric characteristics of double perovskites Rb2XInBr6 (X = Na, K) for photovoltaic applications: a DFT approach. Solar Energy 265, 112131 (2023)

    Article  CAS  Google Scholar 

  37. V. Lucarini, J.J. Saarinen, K.E. Peiponen, E.M. Vartiainen, Kramers–Kronig Relations in Optical Materials Research (Springer, Cham, 2005)

    Google Scholar 

  38. G.K. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(1), 67–71 (2006)

    Article  CAS  Google Scholar 

  39. A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña, Gibbs A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 182(10), 2232–2248 (2011)

    Article  CAS  Google Scholar 

  40. J. Tao, J.P. Perdew, H. Tang, C. Shahi, Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures. J. Chem. Phys. (2018). https://doi.org/10.1063/1.5018572

    Article  PubMed  Google Scholar 

  41. G.S. Painter, Improved correlation corrections to the local-spin-density approximation. Phys. Rev. B 24(8), 4264 (1981)

    Article  CAS  Google Scholar 

  42. V.G. Tyuterev, N. Vast, Murnaghan’s equation of state for the electronic ground state energy. Comput. Mater. Sci. 38(2), 350–353 (2006)

    Article  CAS  Google Scholar 

  43. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7(7), 4548–4556 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. A.E. Fedorovskiy, N.A. Drigo, M.K. Nazeeruddin, The role of Goldschmidt’s tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range. Small Methods 4(5), 1900426 (2020)

    Article  CAS  Google Scholar 

  45. M.A. Ali, A.A. Alothman, M. Mushab, A. Khan, M. Faizan, DFT insight into structural, electronic, optical and thermoelectric properties of eco-friendly double perovskites Rb2GeSnX6 (X = Cl, Br) for green energy generation. J. Inorg. Organometall. Polym. Mater. 33(11), 3402–3412 (2023)

    Article  CAS  Google Scholar 

  46. R. Ullah, M.A. Ali, A. Khan, R.A. Alshgari, M.S.S. Mushab, A. Samad, Effect of cation exchange on structural, electronic, magnetic and transport properties of Ba2MReO6 (M = In, Gd). J. Magn. Magn. Mater. 546, 168816 (2022)

    Article  CAS  Google Scholar 

  47. M.A. Blanco, A.M. Pendás, E. Francisco, J.M. Recio, R. Franco, Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3. J. Mol. Struct. 368, 245–255 (1996)

    Article  CAS  Google Scholar 

  48. E. Francisco, J.M. Recio, M.A. Blanco, A.M. Pendás, A. Costales, Quantum-mechanical study of thermodynamic and bonding properties of MgF2. J. Phys. Chem. A 102(9), 1595–1601 (1998)

    Article  CAS  Google Scholar 

  49. S.A. Dar, V. Srivastava, U.K. Sakalle, V. Parey, Ferromagnetic phase stability, magnetic, electronic, elasto-mechanical and thermodynamic properties of BaCmO3 perovskite oxide. J. Electron. Mater. 47, 3809–3816 (2018)

    Article  CAS  Google Scholar 

  50. S.A. Mir, S. Yousuf, D.C. Gupta, First principle study of mechanical stability, magneto-electronic and thermodynamic properties of double perovskites: A2MgWO6 (A = Ca, Sr). Mater. Sci. Eng. B 250, 114434 (2019)

    Article  CAS  Google Scholar 

  51. S.A. Dar, V. Srivastava, S.N. Tripathi, U.K. Sakalle, A complete DFT description on structural, electronic, elastic, mechanical and thermodynamic properties of some intermetallic AuX2 (X = Al, Ga, In) compounds. Eur. Phys. J. Plus 133(12), 541 (2018)

    Article  Google Scholar 

  52. J. Luo, A. Yang, Z. Xie, First-principles study on the direct bandgap double perovskite series Cs2LiInX6 (X = F, Cl, and Br). ACS Omega 6(48), 32408–32416 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. M.S. Islam, R. Ahmed, M. Mahamudujjaman, R.S. Islam, S.H. Naqib, A comparative study of the structural, elastic, thermophysical, and optoelectronic properties of CaZn2X2 (X = N, P, As) semiconductors via ab-initio approach. Results Phys. 44, 106214 (2023)

    Article  Google Scholar 

  54. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Crystal structures and elastic properties of superhard Ir N2 and Ir N3 from first principles. Phys. Rev. B 76(5), 054115 (2007)

    Article  Google Scholar 

  55. J.C. Tan, B. Civalleri, C.C. Lin, L. Valenzano, R. Galvelis, P.F. Chen, T.D. Bennett, C. Mellot-Draznieks, C.M. Zicovich-Wilson, A.K. Cheetham, Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework. Phys. Rev. Lett. 108(9), 095502 (2012)

    Article  PubMed  Google Scholar 

  56. F. Mouhat, F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90(22), 224104 (2014)

    Article  Google Scholar 

  57. G. Feng, X. Jiang, W. Wei, P. Gong, L. Kang, Z. Li, Y. Li, X. Li, X. Wu, Z. Lin, W. Li, High pressure behaviour and elastic properties of a dense inorganic–organic framework. Dalton Trans. 45(10), 4303–4308 (2016)

    Article  CAS  PubMed  Google Scholar 

  58. S. Kojima, Poisson’s ratio of glasses, ceramics, and crystals. Materials 17(2), 300 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Q. Long, X. Nie, S.L. Shang, J. Wang, Y. Du, Z. Jin, Z.K. Liu, C15NbCr2 laves phase with mechanical properties beyond Pugh’s criterion. Comput. Mater. Sci. 121, 167–173 (2016)

    Article  CAS  Google Scholar 

  60. C.M. Zener, S. Siegel, Elasticity and anelasticity of metals. J. Phys. Chem. 53(9), 1468–1468 (1949)

    Article  Google Scholar 

  61. Hajjir Titrian, Ugur Aydin, Martin Friák, Duancheng Ma, Dierk Raabe, Jörg. Neugebauer, Self-consistent scale-bridging approach to compute the elasticity of multi-phase polycrystalline materials. MRS Online Proc. Library 1524, 301–307 (2013)

    Article  Google Scholar 

  62. M. Friák, W.A. Counts, D. Ma, B. Sander, D. Holec, D. Raabe, J. Neugebauer, Theory-guided materials design of multi-phase Ti–Nb alloys with bone-matching elastic properties. Materials 5, 1853–1872 (2012)

    Article  PubMed Central  Google Scholar 

  63. L.-F. Zhu, M. Friák, L. Lymperakis, H. Titrian, U. Aydin, A.M. Janus, H.-O. Fabritius et al., Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals. J. Mech. Behav. Biomed. Mater. 20, 296–304 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. T. Ou, Q. Zhuang, H. Yan, S. Feng, P. Li, X. Ma, Lead-free halide double perovskites Rb2InSbX6 (X = F, Cl, Br, I): a first-principles study of structural and optoelectrical properties. Chem. Phys. 573, 112015 (2023)

    Article  CAS  Google Scholar 

  65. A. Boutramine, S. Al-Qaisi, S. Samah, N. Iram, T.A. Alrebdi, S. Bouzgarrou, A.S. Verma, S. Belhachi, R. Sharma, Optoelectronic and thermoelectric properties of new lead-free K2NaSbZ6 (Z = Br, I) halide double-perovskites for clean energy applications: a DFT study. Opt. Q. Electron. 56(3), 417 (2024)

    Article  CAS  Google Scholar 

  66. M. Hilal, B. Rashid, S.H. Khan, A. Khan, Investigation of electro-optical properties of InSb under the influence of spin-orbit interaction at room temperature. Mater. Chem. Phys. 184, 41–48 (2016)

    Article  CAS  Google Scholar 

  67. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F.J.P.R.B. Bechstedt, Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73(4), 045112 (2006)

    Article  Google Scholar 

  68. G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  69. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128(5), 2093 (1962)

    Article  CAS  Google Scholar 

  70. S. Menakh, B. Daoudi, A. Boukraa, K. Ferkous, First-principles calculations to investigate structural, elastic, electronic and optical properties of A2OsH6 for storage hydrogen and optoelectronic devices. Comput. Condens. Matter 31, e00684 (2022)

    Article  Google Scholar 

  71. M.Q. Shah, M. Shafiq, A. Naeem, G. Murtaza, A. Ayyaz, A. Usman, S.M. Deen, M.A. El-Sheikh, Effect of position occupancy of different elements on the structural stability, optoelectronic, thermoelectric and elastic properties of Cs2CuAsX6 (X: Cl, Br, I) halide double perovskite: DFT analysis. Mater. Sci. Semicond. Process. 174, 108187 (2024)

    Article  CAS  Google Scholar 

  72. S. Hu, Z. Ren, Metal halide perovskites as emerging thermoelectric materials. ACS Energy Lett. 6(11), 3882–3905 (2021)

    Article  CAS  Google Scholar 

  73. S.A. Khandy, D.C. Gupta, Electronic structure, magnetism and thermoelectric properties of double perovskite Sr2HoNbO6. J. Magn. Magn. Mater. 458, 176–182 (2018)

    Article  CAS  Google Scholar 

  74. N.A. Noor, Q. Mahmood, M. Rashid, B.U. Haq, A. Laref, The pressure-induced mechanical and optoelectronic behavior of cubic perovskite PbSnO3 via ab-initio investigations. Ceram. Int. 44(12), 13750–13756 (2018)

    Article  CAS  Google Scholar 

  75. G.M. Mustafa, A. Slam, S. Saba, N.A. Noor, M.W. Iqbal, A. Dahshan, Optoelectronic and thermoelectric characteristics of halide based double perovskites K2YAgX6 (X = Br, I) for energy storage applications. Polyhedron 229, 116184 (2023)

    Article  CAS  Google Scholar 

  76. R.A. Kishore, A. Nozariasbmarz, B. Poudel, S. Priya, High-performance thermoelectric generators for field deployments. ACS Appl. Mater. Interfaces 12(9), 10389–10401 (2020)

    Article  CAS  PubMed  Google Scholar 

  77. G.M. Mustafa, S. Saba, Q. Mahmood, N.A. Kattan, N. Sfina, T. Alshahrani, A. Mera, G.A. Mersal, M.A. Amin, Study of optoelectronic, thermoelectric, mechanical properties of double perovskites Cs2AgAsX6 (X = cl, br, I) for solar cells and energy harvesting. Opt. Q. Electron. 55(6), 527 (2023)

    Article  CAS  Google Scholar 

  78. J.Y. Al-Humaidi, A. Ullah, N.U. Khan, J. Iqbal, S. Khan, A. Algahtani, V. Tirth, T. Al-Mughanam, M.S. Refat, A. Zaman, First-principle insight into the structural, electronic, elastic and optical properties of Cs-based double perovskites Cs2XCrCl6 (X = K, Na). RSC Adv. 13(30), 20966–20974 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. A. Kaltzoglou, P. Falaras, Recent developments on hybrid perovskite materials for solar energy conversion and environmental protection. Current Opin. Chem. Eng. 33, 100708 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number RGP2/358/44. This research was funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R7), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

The funding source is not available.

Author information

Authors and Affiliations

Authors

Contributions

Ahmad Ayyaz: Conceptualization, Writing-original draft, Review & editing. Figures and Tables G. Murtaza: Formal analysis, Supervision. Youssef Bakkour: Validation, Visualization. Murefah mana Al-Anazy: Data curation, Investigation, Software.

Corresponding authors

Correspondence to Ahmad Ayyaz or G. Murtaza.

Ethics declarations

Conflict of interest

The authors do not have any known conflict of interest in the publication of this work.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayyaz, A., Murtaza, G., Bakkour, Y. et al. Impact of Halide Ion Occupancy on Thermodynamic, Mechanical, Electro-optic, and Electron Transport Characteristics of Rb2CuAsX6 (X = F, Cl, Br) Double Perovskites Using Density Functional Theory. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03079-3

Keywords

Navigation