Skip to main content
Log in

Fluorescent indicators for live-cell and in vitro detection of inorganic cadmium dynamics

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Cadmium contamination is a severe threat to the environment and food safety. Thus, there is an urgent need to develop highly sensitive and selective cadmium detection tools. The engineered fluorescent indicator is a powerful tool for the rapid detection of inorganic cadmium in the environment. In this study, the development of yellow fluorescent indicators of cadmium chloride by inserting a fluorescent protein at different positions of the high cadmium-specific repressor and optimizing the flexible linker between the connection points is reported. These indicators provide a fast, sensitive, specific, high dynamic range, and real-time readout of cadmium ion dynamics in solution. The excitation and emission wavelength of this indicator used in this work are 420/485 and 528 nm, respectively. Fluorescent indicators N0C0/N1C1 showed a linear response to cadmium concentration within the range from 10/30 to 50/100 nM and with a detection limit of 10/33 nM under optimal condition. Escherichia coli cells containing the indicator were used to further study the response of cadmium ion concentration in living cells. E. coli N1C1 could respond to different concentrations of cadmium ions. This study provides a rapid and straightforward method for cadmium ion detection in vitro and the potential for biological imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information.

References

  1. Guo J, Zhang Y, Liu W, Zhao J, Yu S, Jia H, Zhang C, Li Y (2022) Incorporating in vitro bioaccessibility into human health risk assessment of heavy metals and metalloid (As) in soil and pak choi (Brassica chinensis L.) from greenhouse vegetable production fields in a megacity in Northwest China. Food Chem 373:131488. https://doi.org/10.1016/j.foodchem.2021.131488

    Article  CAS  PubMed  Google Scholar 

  2. Li Z, Liang Y, Hu H, Shaheen SM, Zhong H, Tack FMG, Wu M, Li YF, Gao Y, Rinklebe J, Zhao J (2021) Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environ Int 156:106749. https://doi.org/10.1016/j.envint.2021.106749

    Article  CAS  PubMed  Google Scholar 

  3. Williams C, David D (1973) The effect of superphosphate on the cadmium content of soils and plants. Soil Res 11(1):43–56. https://doi.org/10.1071/SR9730043

    Article  CAS  Google Scholar 

  4. Huang R, Pan H, Zhou M, Jin J, Ju Z, Ren G, Shen M, Zhou P, Chen X (2021) Potential liver damage due to co-exposure to As, Cd, and Pb in mining areas: Association analysis and research trends from a Chinese perspective. Environ Res 201. https://doi.org/10.1016/j.envres.2021.111598

    Article  Google Scholar 

  5. Fatima G, Raza AM, Hadi N, Nigam N, Mahdi AA (2019) Cadmium in Human Diseases: It’s More than Just a Mere Metal. Indian J Clin Biochem 34(4):371–378. https://doi.org/10.1007/s12291-019-00839-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu Y, Wei X, Li X, Chen Y, Mao X, Chen G, Liu C (2021) Cadmium inhibits signal transducer and activator of transcription 6 leading to pancreatic beta cell apoptosis. Endocr J. https://doi.org/10.1507/endocrj.EJ21-0115

    Article  PubMed  Google Scholar 

  7. Talukder M, Bi SS, Jin HT, Ge J, Zhang C, Lv MW, Li JL (2021) Cadmium induced cerebral toxicity via modulating MTF1-MTs regulatory axis. Environ Pollut 285:117083. https://doi.org/10.1016/j.envpol.2021.117083

    Article  CAS  PubMed  Google Scholar 

  8. Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208. https://doi.org/10.1016/j.taap.2009.04.020

    Article  CAS  PubMed  Google Scholar 

  9. Salek Maghsoudi A, Hassani S, Mirnia K, Abdollahi M (2021) Recent Advances in Nanotechnology-Based Biosensors Development for Detection of Arsenic, Lead, Mercury, and Cadmium. Int J Nanomedicine 16:803–832. https://doi.org/10.2147/IJN.S294417

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gao X, Ma Z, Sun M, Liu X, Zhong K, Tang L, Li X, Li J (2022) A highly sensitive ratiometric fluorescent sensor for copper ions and cadmium ions in scallops based on nitrogen doped graphene quantum dots cooperating with gold nanoclusters. Food Chem 369:130964. https://doi.org/10.1016/j.foodchem.2021.130964

    Article  CAS  PubMed  Google Scholar 

  11. Nardi EP, Evangelista FS, Tormen L, SaintPierre TD, Curtius AJ, de Souza SS, Barbosa F (2009) The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem 112(3):727–732. https://doi.org/10.1016/j.foodchem.2008.06.010

    Article  CAS  Google Scholar 

  12. Moreno-Martin G, Gomez-Gomez B, Eugenia Leon-Gonzalez M, Madrid Y (2022) Characterization of AgNPs and AuNPs in sewage sludge by single particle inductively coupled plasma-mass spectrometry. Talanta 238. https://doi.org/10.1016/j.talanta.2021.123033

    Article  PubMed  Google Scholar 

  13. Wei W-J, Yang Y, Li X-Y, Huang P, Wang Q, Yang P-J (2022) Cloud point extraction (CPE) combined with single particle -inductively coupled plasma-mass spectrometry (SP-ICP-MS) to analyze and characterize nano-silver sulfide in water environment. Talanta 239. https://doi.org/10.1016/j.talanta.2021.123117

    Article  PubMed  Google Scholar 

  14. Dos Santos Morales P, Mantovani Dos Santos P, Evaristo de Carvalho A, Zanetti Corazza M (2022) Vortex-assisted magnetic solid-phase extraction of cadmium in food, medicinal herb, and water samples using silica-coated thiol-functionalized magnetic multiwalled carbon nanotubes as adsorbent. Food Chem 368:130823. https://doi.org/10.1016/j.foodchem.2021.130823

    Article  CAS  PubMed  Google Scholar 

  15. Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 63:276–286. https://doi.org/10.1016/j.bios.2014.07.052

    Article  CAS  PubMed  Google Scholar 

  16. Kim HJ, Lim JW, Jeong H, Lee SJ, Lee DW, Kim T, Lee SJ (2016) Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosens Bioelectron 79:701–708. https://doi.org/10.1016/j.bios.2015.12.101

    Article  CAS  PubMed  Google Scholar 

  17. Li L, Liang J, Hong W, Zhao Y, Sun S, Yang X, Xu A, Hang H, Wu L, Chen S (2015) Evolved bacterial biosensor for arsenite detection in environmental water. Environ Sci Technol 49(10):6149–6155. https://doi.org/10.1021/acs.est.5b00832

    Article  CAS  PubMed  Google Scholar 

  18. Helassa N, Zhang XH, Conte I, Scaringi J, Esposito E, Bradley J, Carter T, Ogden D, Morad M, Torok K (2015) Fast-Response Calmodulin-Based Fluorescent Indicators Reveal Rapid Intracellular Calcium Dynamics. Sci Rep 5:15978. https://doi.org/10.1038/srep15978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu WF, Deng MY, Yang CM, Liu F, Guan XM, Du YC, Wang L, Chu J (2020) Genetically encoded single circularly permuted fluorescent protein-based intensity indicators. J Phys-D-Appl Phys 53(11):22. https://doi.org/10.1088/1361-6463/ab5dd8

    Article  CAS  Google Scholar 

  20. Zhao Y, Hu Q, Cheng F, Su N, Wang A, Zou Y, Hu H, Chen X, Zhou HM, Huang X, Yang K, Zhu Q, Wang X, Yi J, Zhu L, Qian X, Chen L, Tang Y, Loscalzo J, Yang Y (2015) SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents. Cell Metab 21(5):777–789. https://doi.org/10.1016/j.cmet.2015.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tao R, Shi M, Zou Y, Cheng D, Wang Q, Liu R, Wang A, Zhu J, Deng L, Hu H, Chen X, Du J, Zhu W, Zhao Y, Yang Y (2018) Multicoloured fluorescent indicators for live-cell and in vivo imaging of inorganic mercury dynamics. Free Radic Biol Med 121:26–37. https://doi.org/10.1016/j.freeradbiomed.2018.04.562

    Article  CAS  PubMed  Google Scholar 

  22. Lee SW, Glickmann E, Cooksey DA (2001) Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 67(4):1437–1444. https://doi.org/10.1128/AEM.67.4.1437-1444.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang S, Liu X, Hu Q, Wei T, Wang J, Chen H, Wu C (2020) Temperature-Driven Metalloprotein-Based Hybrid Hydrogels for Selective and Reversible Removal of Cadmium(II) from Water. ACS Appl Mater Interfaces 12(2):2991–2998. https://doi.org/10.1021/acsami.9b19306

    Article  CAS  PubMed  Google Scholar 

  24. Liu X, Hu Q, Yang J, Huang S, Wei T, Chen W, He Y, Wang D, Liu Z, Wang K, Gan J, Chen H (2019) Selective cadmium regulation mediated by a cooperative binding mechanism in CadR. Proc Natl Acad Sci U S A 116(41):20398–20403. https://doi.org/10.1073/pnas.1908610116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao Y, Jin J, Hu Q, Zhou HM, Yi J, Yu Z, Xu L, Wang X, Yang Y, Loscalzo J (2011) Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 14(4):555–566. https://doi.org/10.1016/j.cmet.2011.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286. https://doi.org/10.1038/nmeth866

    Article  CAS  PubMed  Google Scholar 

  27. Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73(5):2782–2790. https://doi.org/10.1016/S0006-3495(97)78307-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Subach OM, Barykina NV, Chefanova ES, Vlaskina AV, Sotskov VP, Ivashkina OI, Anokhin KV, Subach FV (2020) FRCaMP, a Red Fluorescent Genetically Encoded Calcium Indicator Based on Calmodulin from Schizosaccharomyces Pombe Fungus. Int J Mol Sci 22(1):111. https://doi.org/10.3390/ijms22010111

  29. Barykina NV, Subach OM, Piatkevich KD, Jung EE, Malyshev AY, Smirnov IV, Bogorodskiy AO, Borshchevskiy VI, Varizhuk AM, Pozmogova GE, Boyden ES, Anokhin KV, Enikolopov GN, Subach FV (2017) Green fluorescent genetically encoded calcium indicator based on calmodulin/M13-peptide from fungi. PLoS ONE 12(8):e0183757. https://doi.org/10.1371/journal.pone.0183757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chiu TY, Chen PH, Chang CL, Yang DM (2013) Live-cell dynamic sensing of Cd(2+) with a FRET-based indicator. PLoS ONE 8(6):e65853. https://doi.org/10.1371/journal.pone.0065853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zuou B, Chen Y-T, Yang X-Y, Wang Y-S, Hu X-J, Suo Q-L (2019) An Ultrasensitive Colorimetric Strategy for Detection of Cadmium Based on the Peroxidase-like Activity of G-Quadruplex-Cd(II) Specific Aptamer. Anal Sci 35(3):277–282. https://doi.org/10.2116/analsci.18P248

    Article  Google Scholar 

  32. Lai B, Wang R, Yu X, Wang H, Wang Z, Tan M (2020) A Highly Sensitive “on-off” Time-Resolved Phosphorescence Sensor Based on Aptamer Functionalized Magnetite Nanoparticles for Cadmium Detection in Food Samples. Foods 9(12):1758. https://doi.org/10.3390/foods9121758

  33. Shi E, Yu G, Lin H, Liang C, Zhang T, Zhang F, Qu F (2019) The incorporation of bismuth(III) into metal-organic frameworks for electrochemical detection of trace cadmium(II) and lead(II). Microchim Acta 186(7):451. https://doi.org/10.1007/s00604-019-3522-6

  34. Wang N, Kanhere E, Miao J, Triantafyllou MS (2018) Nanoparticles-Modified Chemical Sensor Fabricated on a Flexible Polymer Substrate for Cadmium(II) Detection. Polymers 10(7):694. https://doi.org/10.3390/polym10070694

  35. Jia X, Liu T, Ma Y, Wu K (2021) Construction of cadmium whole-cell biosensors and circuit amplification. Appl Microbiol Biotechnol 105(13):5689–5699. https://doi.org/10.1007/s00253-021-11403-x

    Article  CAS  PubMed  Google Scholar 

  36. Zhang G, Hu S, Jia X (2021) Highly Sensitive Whole-Cell Biosensor for Cadmium Detection Based on a Negative Feedback Circuit. Front Bioeng Biotechnol 9:799781. https://doi.org/10.3389/fbioe.2021.799781

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tang X, Wang J, Zhao K, Xue H, Ta C (2016) A Simple and Rapid Label-free Fluorimetric “Turn Off-on” Sensor for Cadmium Detection Using Glutathione-capped CdS Quantum Dots. Chem Res Chin Univ 32(4):570–575. https://doi.org/10.1007/s40242-016-5448-4

    Article  CAS  Google Scholar 

  38. Song S, Zou S, Zhu J, Liu L, Kuang H (2018) Immunochromatographic paper sensor for ultrasensitive colorimetric detection of cadmium. Food Agric Immunol 29(1):3–13. https://doi.org/10.1080/09540105.2017.1354358

    Article  CAS  Google Scholar 

  39. Du J, Hu X, Zhang G, Wu X, Gong D (2018) Colorimetric detection of cadmium in water using L-cysteine Functionalized gold-silver nanoparticles. Anal Lett 51(18):2906–2919. https://doi.org/10.1080/00032719.2018.1455103

    Article  CAS  Google Scholar 

  40. Aydin Z, Keles M (2020) Colorimetric cadmium ion detection in aqueous solutions by newly synthesized Schiff bases. Turk J Chem 44(3):791–804. https://doi.org/10.3906/kim-1912-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zehra S, Khan RA, Alsalme A, Tabassum S (2019) Coumarin Derived “Turn on” Fluorescent Sensor for Selective Detection of Cadmium (II) Ion: Spectroscopic Studies and Validation of Sensing Mechanism by DFT Calculations. J Fluoresc 29(4):1029–1037. https://doi.org/10.1007/s10895-019-02416-x

    Article  CAS  PubMed  Google Scholar 

  42. Hui CY, Guo Y, Wu J, Liu L, Yang XQ, Guo X, Xie Y, Yi J (2021) Detection of Bioavailable Cadmium by Double-Color Fluorescence Based on a Dual-Sensing Bioreporter System. Front Microbiol 12:696195. https://doi.org/10.3389/fmicb.2021.696195

    Article  PubMed  PubMed Central  Google Scholar 

  43. Qin WT, Liu XQ, Yu XX, Chu XY, Tian J, Wu NF (2017) Identification of cadmium resistance and adsorption gene from Escherichia coli BL21 (DE3). RSC Adv 7(81):51460–51465. https://doi.org/10.1039/c7ra10656d

    Article  CAS  Google Scholar 

  44. Chen X, Bi M, Yang J, Cai J, Zhang H, Zhu Y, Zheng Y, Liu Q, Shi G, Zhang Z (2022) Cadmium exposure triggers oxidative stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF-alpha/NF-kappaB pathway in swine small intestine. J Hazard Mater 421:126704. https://doi.org/10.1016/j.jhazmat.2021.126704

    Article  CAS  PubMed  Google Scholar 

  45. Yang Y, Liu C, Zhou W, Shi W, Chen M, Zhang B, Schatz DG, Hu Y, Liu B (2021) Structural visualization of transcription activated by a multidrug-sensing MerR family regulator. Nat Commun 12(1):2702. https://doi.org/10.1038/s41467-021-22990-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27(2–3):145–163. https://doi.org/10.1016/S0168-6445(03)00051-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the following support: We thank Dr.Yuzheng Zhao, East China University of Science and Technology, for providing the cpYFP plasmid.

Funding

This work was supported by Guangdong Key Area Research and Development Program (Grant No. 2019B020210003) and the National Key Research and Development Program (2018YFA0901700).

Author information

Authors and Affiliations

Authors

Contributions

Shulin Hu conducted the experiment and drafted the manuscript, Jun Yang analyzed the results, Anqi Liao experiment assisted. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuli Liang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Conflicts of interest/Competing Interests

the authors declare no conflicts of interest or competing interests.

Note

Photophysical properties of N0C0/N1C1 with or without cadmium were measured at room temperature. Extinction coefficients (ε, mM− 1 · cm− 1) were calculated from absorbance (abs) spectra. QYs of N0C0 and N1C1 were measured against EGFP at pH 7.4 (QY 0.6). Brightness is defined as the product of extinction coefficient and quantum yield. Experimental data were fitted to Hill1 equation.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Yang, J., Liao, A. et al. Fluorescent indicators for live-cell and in vitro detection of inorganic cadmium dynamics. J Fluoresc 32, 1397–1404 (2022). https://doi.org/10.1007/s10895-022-02919-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02919-0

Keywords

Navigation