Skip to main content

Advertisement

Log in

Cadmium in Human Diseases: It’s More than Just a Mere Metal

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Cadmium (Cd), poisoning has been reported from all around the World, causing many deaths annually. Cd is a toxic heavy metal, and is widely present in environment. It has been reported that chronic Cd exposure is associated with kidney disease, osteoporosis, cardiovascular diseases and cancer. Smoking causes exposure to significantly higher Cd levels in humans. Tobacco smoke transports Cd into the lungs. Blood then transport it to the rest of the body where it increases effects by potentiating Cd that is already present from Cd-rich food. Other high exposures of Cd can occur with people, who live near hazardous waste sites, or factories that release Cd into the air and people who work in the metal refinery industry. Breathing of Cd can severely damage the lungs and may even cause death. Multiple studies have shown an association between environmental exposure to hazardous chemicals including toxic metals and obesity, diabetes, and metabolic syndrome. At the same time, the existing data on the impact of Cd exposure on obesity and diabetes are contradictory. On the converse, results of epidemiologic studies linking Cd exposure and Osteoporosis, overweight or obesity are far less consistent and even conflicting, also depending on differences in exposure levels. In turn, laboratory studies demonstrated that Cd adversely affects adipose tissue physiopathology through several mechanisms, thus contributing to increased insulin resistance and enhancing diabetes. However, intimate biological mechanisms linking Cd exposure with human diseases are still to be adequately investigated. Therefore, the aim of the present review was to explore the impact of Cd exposure and status on the risk of Cd in human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bernhoft RA. Cadmium toxicity and treatment. Sci World J. 2013;2013:394652.

    Google Scholar 

  2. Sato M, Kondoh M. Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku J Exp Med. 2002;196:9–22.

    CAS  PubMed  Google Scholar 

  3. Hassoun EA, Stohs SJ. Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks and lactate dehydrogenase leakage in J774A.1 cell cultures. Toxicology. 1996;112:219–26.

    CAS  PubMed  Google Scholar 

  4. Filipic M, Fatur T, Vudrag M. Molecular mechanisms of cadmium induced mutagenicity. Hum Exp Toxicol. 2006;25:67–77.

    CAS  PubMed  Google Scholar 

  5. Koedrith P, Seo YR. Advances in carcinogenic metal toxicity and potential molecular markers. Int J Mol Sci. 2011;12:9576–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rikans LE, Yamano T. Mechanisms of cadmium mediated acute hepatotoxicity. J Biochem Mol Toxicol. 2000;14:110–7.

    CAS  PubMed  Google Scholar 

  7. Lin YS, Caffrey JL, Chang MH, Dowling N, Lin JW. Cigarette smoking, cadmium exposure and zinc intake on obstructive lung disorder. Respir Res. 2010;11:53.

    PubMed  PubMed Central  Google Scholar 

  8. Erie JC, Good JA, Butz JA, Hodge DO, Pulido JS. Urinary cadmium and age-related macular degeneration. Am J Ophthalmol. 2007;144:414–8.

    CAS  PubMed  Google Scholar 

  9. Castellanos MJ, Fuente A. The adverse effects of heavy metals with and without noise exposure on the human peripheral and central auditory system: a literature review. Int J Environ Res Public Health. 2016;13:1223.

    PubMed Central  Google Scholar 

  10. Chantarawong W, Takeda K, Sangartit W, Yoshizawa M, Pradermwong K, Shibahara S. Microphthalmiaassociated transcription factor as the molecular target of cadmium toxicity in human melanocytes. Biochem Biophys Res Commun. 2014;454:594–9.

    CAS  PubMed  Google Scholar 

  11. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7:60–72.

    PubMed  PubMed Central  Google Scholar 

  12. Puri VN. Cadmium induced hypertension. Clin Exp Hypertens. 1999;21:79–84.

    CAS  PubMed  Google Scholar 

  13. Satarug S, Nishijo M, Ujjin P, Vanavanitkun Y, Moore MR. Cadmium-induced nephropathy in the development of high blood pressure. Toxicol Lett. 2005;157:57–68.

    CAS  PubMed  Google Scholar 

  14. Eum KD, Lee MS, Paek D. Cadmium in blood and hypertension. Sci Total Environ. 2008;407:147–53.

    CAS  PubMed  Google Scholar 

  15. Prozialeck WC, Edwards JR, Nebert DW, Woods JM, Barchowsky A, Atchison WD. The vascular system as a target of metal toxicity. Toxicol Sci. 2008;102:207–18.

    CAS  PubMed  Google Scholar 

  16. Messner B, Bernhard D. Cadmium and cardiovascular diseases: cell biology, pathophysiology and epidemiological relevance. Biometals. 2010;23:811–22.

    CAS  PubMed  Google Scholar 

  17. Nordberg GF. Cadmium and health in the 21st century: historical remarks and trends for the future. Biometals. 2004;17:485–9.

    CAS  PubMed  Google Scholar 

  18. Aoshima K. Itai-itai disease: cadmium-induced renal tubular osteomalacia. Nihon Eiseigaku Zasshi. 2012;67:455–63.

    CAS  PubMed  Google Scholar 

  19. Cai SW, Yue L, Hu ZN, Zhong XZ, Ye ZL, Xu HD, et al. Cadmium exposure and health effects among residents in an irrigation area with ore dressing wastewater. Sci Total Environ. 1990;90:67–73.

    CAS  PubMed  Google Scholar 

  20. Satarug S, Moore MR. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect. 2004;112:1099–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Simmons RW, Pongsakul P, Saiyasitpanich D, Klinphoklap S. Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implications for public health. Environ Geochem Health. 2005;27:501–11.

    CAS  PubMed  Google Scholar 

  22. Srikanth R, Khanam A, Rao V. Cadmium levels in the urine of male sewage sludge farmers of Hyderabad. India J Toxicol. Environ Health. 1994;43:1–6.

    CAS  PubMed  Google Scholar 

  23. Jin T, Nordberg G, Ye T, Bo M, Wang H, Zhu G, et al. Osteoporosis and renal dysfunction in a general population exposed to cadmium in China. Environ Res. 2004;96:353–9.

    CAS  PubMed  Google Scholar 

  24. Bandara JM, Wijewardena HV, Bandara YM, Jayasooriya RG, Rajapaksha H. Pollution of River Mahaweli and farmlands under irrigation by cadmium from agricultural inputs leading to a chronic renal failure epidemic among farmers in NCP Sri Lanka. Environ Geochem Health. 2011;33:439–53.

    CAS  PubMed  Google Scholar 

  25. Limpatanachote P, Swaddiwudhipong W, Mahasakpan P, Krintratun S. Cadmium-exposed population in Mae Sot District Tak Province: 2. Prevalence of renal dysfunction in the adults. J Med Assoc Thai. 2009;92:1345–53.

    PubMed  Google Scholar 

  26. Songprasert N, Sukaew T, Kusreesakul K, Swaddiwudhipong W, Padungtod C, Bundhamcharoen K. Additional burden of diseases associated with cadmium exposure: a case study of cadmium contaminated rice fields in Mae Sot District, Tak Province, Thailand. Int. J. Environ. Res Public Health. 2015;12:9199–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Swaddiwudhipong W, Limpatanachote P, Mahasakpan P, Krintratun S, Padungtod C. Cadmium-exposed population in Mae Sot District, Tak Province: 1. Prevalence of high urinary cadmium levels in the adults. J Med Assoc Thai. 2007;90:143–8.

    PubMed  Google Scholar 

  28. Baek K, Chung I. Cadmium exposure is associated with monocyte count and monocyte to HDL ratio, a marker of inflammation and future cardiovascular disease in the male population. J Korean Med Sci. 2017;32:1415–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tellez-Plaza M, Guallar E, Howard BV, Umans JG, Francesconi KA, Goessler W, et al. Cadmium exposure and incident cardiovascular disease. Epidemiology. 2013;24:421–9.

    PubMed  PubMed Central  Google Scholar 

  30. Kisling GM, Kopp SJ, Paulson DJ, Tow JP. Cadmium-induced attenuation of coronary blood flow in the perfused rat heart. Toxicol Appl Pharmacol. 1993;118:58–64.

    CAS  PubMed  Google Scholar 

  31. Kukongviriyapan U, Pannangpetch P, Kukongviriyapan V, Donpunha W, Sompamit K, Surawattanawan P. Curcumin protects against cadmium-induced vascular dysfunction hypertension and tissue cadmium accumulation in mice. Nutrients. 2014;6:1194–208.

    PubMed  PubMed Central  Google Scholar 

  32. Yamamoto C, Kaji T, Sakamoto M, Kozuka H. Cadmium stimulation of plasminogen activator inhibitor-1 release from human vascular endothelial cells in culture. Toxicology. 1993;83:215–23.

    CAS  PubMed  Google Scholar 

  33. Szuster-Ciesielska A, Lokaj I, Kandefer-Szerszen M. The influence of cadmium and zinc ions on the interferon and tumor necrosis factor production in bovine aorta endothelial cells. Toxicology. 2000;145:135–45.

    CAS  PubMed  Google Scholar 

  34. Hernandez M, Macia M. Free peripheral sulfhydryl groups, CD11/CD18 integrins, and calcium are required in the cadmium and nickel enhancement of human-polymorphonuclear leukocyte adherence. Arch Environ Contam Toxicol. 1996;30:437–43.

    CAS  PubMed  Google Scholar 

  35. Kusaka Y, Kelly RA, Williams GH, Kifor I. Coronary microvascular endothelial cells cosecrete angiotensin II and endothelin-1 via a regulated pathway. Am J Physiol Heart Circ Physiol. 2000;279:1087–96.

    Google Scholar 

  36. Pereira FE, Coffin JD, Beall HD. Activation of protein kinase C and disruption of endothelial monolayer integrity by sodium arsenite: potential mechanism in the development of atherosclerosis. Toxicol Appl Pharmacol. 2007;220:164–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Satarug S, Nishijo M, Lasker JM, Edwards RJ, Moore MR. Kidney dysfunction and hypertension: role for cadmium, p450 and heme oxygenases? Tohoku J Exp Med. 2006;208:179–202.

    CAS  PubMed  Google Scholar 

  38. Wu H, Liao Q, Chillrud SN, Yang Q, Huang L, Bi J, et al. Environmental exposure to cadmium: health risk assessment and its associations with hypertension and impaired kidney function. Sci Rep. 2016;6:29989.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sundblad BM, Ji J, Levänen B, Midander K, Julander A, Larsson K, et al. Extracellular cadmium in the bronchoalveolar space of long-term tobacco smokers with and without COPD and its association with inflammation. Int J Chron Obstruct Pulmon Dis. 2016;11:1005–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Olszowski T, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Pro-inflammatory properties of cadmium. Acta Biochim Pol. 2012;59:475–82.

    CAS  PubMed  Google Scholar 

  41. Odewumi C, Latinwo L, Sinclair A, Badisa V, Abdullah A, Badisa R. Effect of cadmium on the expression levels of interleukin-1α and interleukin-10 cytokines in human lung cells. Mol Med Rep. 2015;12:6422–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Papa V, Wannenes F, Crescioli C, Caporossi D, Lenzi A, Migliaccio S, et al. The environmental pollutant cadmiuminduces homeostasis alteration inmuscle cells in vitro. J Endocrinol Investig. 2014;37:1073–80.

    CAS  Google Scholar 

  43. Ramyaa P, Krishnaswamy R, Padma V. Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells-up regulation of Nrf2 expression and down regulation of NF-κB and COX-2. Biochim Biophys Acta. 2014;1840:681–92.

    CAS  PubMed  Google Scholar 

  44. Kido T, Nogawa K, Yamada Y, Honda R, Tsuritani I, Ishizaki M, et al. Osteopenia in inhabitants with renal dysfunction induced by exposure to environmental cadmium. Int Arch Occup Environ Health. 1989;61:271–6.

    CAS  PubMed  Google Scholar 

  45. Kjellström T. Mechanism and epidemiology of bone e Vects of cadmium. IARC Sci Publ. 1992;118:301–10.

    Google Scholar 

  46. Kido T, Nogawa K, Honda R, Tsuritani I, Ishizaki M, Yamada Y, et al. The association between renal dysfunction and osteopenia in environmental cadmium-exposed subjects. Environ Res. 1990;51:71–82.

    CAS  PubMed  Google Scholar 

  47. Aoshima K, Kasuya M. Preliminary study on serum levels of 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D in cadmium-induced renal tubular dysfunction. Toxicol Lett. 1991;57(91–9):438.

    Google Scholar 

  48. Tsuritani I, Honda R, Ishizaki M, Honda R, Yamada Y, Ishizaki M. Impairment of vitamin D metabolism due to environmental cadmium exposure, and possible relevance to sex-related diVerences in vulnerability to the bone damage. J Toxicol Environ Health. 1992;37:519–33.

    CAS  PubMed  Google Scholar 

  49. Kazantzis G. Renal tubular dysfunction and abnormalities of calcium metabolism in cadmium workers. Environ Health Perspect. 1979;28:155–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bhattacharyya MH, Sacco-Gibson NA, Peterson DP. Cadmium-induced bone loss: increased susceptibility in female beagles after ovariectomy. IARC Sci Publ. 1992;118:279–86.

    CAS  Google Scholar 

  51. Kazantzis G. Cadmium, osteoporosis and calcium metabolism. Biometals. 2004;17:493–8.

    CAS  PubMed  Google Scholar 

  52. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.

    PubMed  Google Scholar 

  53. Cackovic M, Kalinic N, Vadjic V, Pehnec G. Heavy metals and acidic components in total deposited matter in sibenik and national park kornati, croatia. Arch Environ Contam Toxicol. 2009;56:12–20.

    CAS  PubMed  Google Scholar 

  54. Yang QW, Li H, Long FY. Heavy metals of vegetables and soils of vegetable bases in Chongqing, Southwest China. Environ. Monit. Assess. 2007;130:271–9.

    CAS  PubMed  Google Scholar 

  55. Diawara MM, Litt JS, Unis D, Alfonso N, Martinez L, Crock JG, et al. Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: implications for population health risk. Environ Geochem Health. 2006;28:297–315.

    CAS  PubMed  Google Scholar 

  56. Jarup L. Cadmium overload and toxicity. Nephrol Dial Transplant. 2002;17:35–9.

    CAS  PubMed  Google Scholar 

  57. Prozialeck WC, Vaidya VS, Liu J, Waalkes MP, Edwards JR, Lamar PC, et al. Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity. Kidney Int. 2007;72:985–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bernard A. Renal dysfunction induced by cadmium: biomarkers of critical effects. Biometals. 2004;17:519–23.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghizal Fatima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, G., Raza, A.M., Hadi, N. et al. Cadmium in Human Diseases: It’s More than Just a Mere Metal. Ind J Clin Biochem 34, 371–378 (2019). https://doi.org/10.1007/s12291-019-00839-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-019-00839-8

Keywords

Navigation